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Chapter 1

General comments

This book reflects the content of and is based on notes for the ISM course which
has been given at the UNAM by Jorge Cantó and Alejandro Raga for over 25
years. In the more recent years, the lectures of this course are being taken over
by members of the “new generation” of our group: Alejandro Esquivel, Ary
Rodŕıguez González and Pablo Velázquez.

The course (as well as the book) is divided into three main parts:

� I. A general introduction (in which this chapter is included),

� II. The physical processes in the ionised ISM and models of static pho-
toionised regions. This part of the course is in the style of the classical
books of Aller[4] and Osterbrock[19] (the latter in its multiple editions),
and includes discussions of the basic processes, the ionisation and ex-
citation state of the gas, and the prediction of the observed line and
continuum spectrum,

� III. The dynamics of the ISM. This part starts with a derivation of the
gasdynamic equations and simple, general solutions of astrophysical in-
terest (sound waves, instabilities and shock waves). This is followed by
a selection of problems of ISM dynamics (e.g., expansion of HII regions,
SN remnants and winds),

� IV. astrophysical jets.
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The second section is in the style of the books of Dyson & Williams [13] (in
its different incarnations) and Shore [32]. There is a quite extended section
on jets that, though it should belong in “part III” (dynamics of the ISM),
has been made into a “part IV” for organizational reasons. Stellar winds and
accretion disks are missing.

Also missing from this book is the chemistry of the ISM and dust (which
are only given in a schematic way in our ISM course and are therefore not
worthwhile to include). These topics are covered in several books written by
people with much more knowledge than us. Also, magnetic fields (and the
modelling of magnetized flows with the magnetohydrodynamic equations) are
omitted.

This book is directed to master’s, PhD students or researchers interested in
calculating dynamical models of the ISM. We feel that it provides more detail
than previous books on how to calculate the ionisation/excitation state and
how to develop dynamical ISM models than previous books. Also, the book
covers a quite broad selection of different applications.

Finally, we should mention that the book is strongly focussed on theoretical
issues, with only minimal descriptions of the observational characteristics of
the ISM.

This book is “free access”. We welcome comments from readers, and will con-
sider them in future editions of the book. We also plan to include descriptions
of more flows in a second edition of this book. Please send your comments to:
raga@nucleares.unam.mx.
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Chapter 2

Observational characteristics of
the ISM

At the end of the XIX’th century, through spectroscopic observations Huggins
[15] realized that while some of the (well known) diffuse nebulae were far away
groups of stars (i.e., external galaxies), others were made of diffuse gas sur-
rounding blue stars. This is without doubt a clear realization of the existence
of material in the space between stars (the “interstellar medium”).

In the western literature, the first reference to the interstellar medium appar-
ently is the reference to the “coal sacks” in the southern Milky Way (dusty
molecular clouds covering the view of the Galactic disk in the general direc-
tion of the Galactic centre). These dark clouds were of course well known
for southern civilizations, some of which gave them an important role in cre-
ation/destruction myths (notably in Australia).

The interstellar medium has a mixture of gas and dust, with the gas to dust
mass ratio of ∼ 104 and gas to dust number ratio (of particles) ∼ 1012. The
dust particles have sizes of ∼ 1 µm and despite their low abundance they
have important optical effects, and can also effect the thermal balance and the
chemistry of the gas.

The ISM of our galaxy has abundances (by number) similar to the ones of
the solar atmosphere. Typical abundances (by number, with respect to the
total number of atoms/ions) of some of the elements present are: H→ 0.9,
He→ 0.1, C→ 3 × 10−4, N→ 10−4, O→ 5 × 10−4, S→ 2 × 10−5, Ne→ 10−4,
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Ca→ 2× 10−6, Fe→ 10−6. Clearly, H and He dominate the composition of the
gas (by number of particles and by mass). The heavier elements, however, have
to be considered (except in the more simple models) because the energy loss
due to the emission lines they emit generally dominates the thermal balance
of the ISM.

Throughout this book, for the ionisation of the different elements we use the
“astronomical notation”: H→HI (neutral H), H+ →HII, He→HeI, He+ →
HeII, He++ →HeIII, etc. In other words, the ions are denoted by the identi-
fication of the element, followed by a roman numeral corresponding to z + 1,
where z is the charge of the ion.

There are different regions of the ISM in which the gas can be mostly neutral,
have a high ionisation state (with fully ionised H and He and possibly multiple
ionisations of heavier elements) or be mostly molecular. Some of these regions
are:

1. Molecular clouds: dense regions of the ISM in which Hydrogen forms H2

molecules, and the heavier elements can be present in molecules of differ-
ent complexity. These regions have complex, inhomogeneous structures
with compact “cores” (of sizes ∼ 1016 → 1018 cm) and more diffuse re-
gions. The self-gravity of the gas is generally important. They have tem-
peratures T ∼ 10 → 100 K and number densities n ∼ 103 → 107 cm−3.
There is strong evidence that dense parts of molecular clouds (dense
cores) collapse to form new stars and planetary systems,

2. Photodissociation regions (PDR): regions that are generally found at the
outer edges of molecular regions. Molecules, neutral atoms, and mostly
singly ionised atoms are found in PDR’s. Their temperatures are in the
∼ 100 → 1000 K range, and a wide range of densities is possible,

3. H I regions: neutral gas filling a substantial part of the Galactic disk.
They have typical temperatures of ∼ 100 → 5000 K, and densities ∼
1 → 10 cm−3,

4. H II regions: diffuse gas surrounding hot, massive stars, which is pho-
toionised by the far ultraviolet radiation from the stars. They have
temperatures T ≈ 104 K and densities ranging from n ∼ 1 cm−3 (for an
H II region in a low density zone of the Galactic disk) to ∼ 105 cm−3

(for an H II region within a high density zone of a molecular cloud),

16



5. Planetary nebulae: gas previously ejected from stars which are now hot,
pre-white dwarf objects which photoionise material that was previously
ejected by the stars. The physical processes determining their properties
are similar to the ones of H II regions. Their temperatures are T ∼ 104 K
and densities n ∼ 100 → 104 cm−3. The abundances of the heavier
elements can differ appreciably from the typical ISM abundances (see
above),

6. Stellar winds and jets: gas ejected from stars in the form of an approxi-
mately isotropic outflow (wind) or in the form of well collimated beams
(jets). The observed stellar winds and jets have temperatures ranging
from ∼ 1000 → 106 K (depending on which compact objects are eject-
ing them) and velocities ranging from ∼ 5 km s−1 up to a substantial
fraction of the speed of light,

7. Supernova remnants: These are expanding “bubbles” of hot gas produced
by supernova explosions. These bubbles push out a shock wave that heats
the gas to coronal temperatures (∼ 106 → 107 K). They are found as
single objects, and also (notably in some active galaxies) as groups of
remnants that merge into a single “superbubble”, that can eject coronal
gas from the galaxy into the intergalactic medium (in what is known as
a “galactic fountain”).

Even though many of the theoretical aspects of the ISM have been first studied
thinking about our Galaxy, the same ideas mostly apply to the ISM of external
galaxies (with the caveat that other galaxies many times have different abun-
dances of the “heavy elements” or “metals”). Also, many of the ideas about
the ISM also apply to the “intergalactic medium”.

Part II of the book covers the basic physics of photoionised regions (items 3
and 4 above). The same physical processes apply to all of the objects in the
objects with item numbers ≥ 5. Part III discusses (mostly analytical) models
for all of the objects of the above list. Part IV discusses astrophysical jets.
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Part II

Physical processes in the ISM
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Chapter 3

Photoionised Regions

3.1 Introduction

Starting with the paper of Huggins ([15], “On the spectrum of the great nebula
in Orion...”), photoionised regions have been one of the dominant topics in
research on the ISM. Photoionised regions in our galaxy fall into two main
categories :

1. H II regions : these are regions of the ISM in which massive stars have
formed, and the far-UV radiation from these stars photoionises the sur-
rounding gas. The brightest and best studied region is the Orion Nebula
(see Fig. 3.1).

2. Planetary nebulae : these are evolved stars which have ejected most of
their material in the form of winds. The remaining, hot core of the star
emits far-UV radiation which photoionises the still outflowing material
which was previously ejected from the star. An example of this kind of
object is the Helix Nebula (see Fig. 3.2).
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Figure 3.1: Example of an H II region: the Orion Nebula (source: George
Herbig, Lick Observatory)
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Figure 3.2: Example of a planetary nebula: the Helix [source: NASA, ESA
and C. R. O’Dell (Vanderbilt University)]
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3.2 The ionising photon rate produced by the

central star

3.2.1 General considerations

The fundamental process giving rise to the “photoionised region” phenomenon
is the production of far-UV photons by the “central source” of the nebula. This
“central source” could in principle be one or several stars which produce the
photoionisation.

In the ISM, the gas is mostly composed of hydrogen (H), and most of the
H atoms are in the ground, n = 1 state. The energy difference between an
electron in this state, and the lowest possible energy of a free electron is the
“ionisation potential” for the n = 1 level of H : χH = 13.6 eV. In order to
photoionise an electron from this level, it is necessary to have photons with
energies hν ≥ χH .

The photoionisation process is shown schematically in Fig. 3.3. A photon of
energy hν ≥ χH (where h is the Planck constant and ν the frequency of the
photon) hits an H atom in the n = 1 state. The photon is absorbed, and the
electron has a transition to a free state with a kinetic energy Ek = meve

2/2 =
hν − χH (where me is the mass and ve the velocity of the free electron).

Let us call Lν the luminosity per unit frequency emitted by the central source
of the nebula (the total luminosity of the star being L =

∫∞

0
Lνdν). The

total number of ionising photons (i.e., of photons with frequencies larger than
νH = χH/h) emitted per unit time is then given by :

S∗ =

∫ ∞

νH

Lν

hν
dν . (3.1)

S∗ is the “ionising photon rate”, and is sometimes noted as “Q” in the liter-
ature. This quantity could correspond to a single star, or to a number of hot
stars present within the photoionised region.
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H (n=1)
HII

e

νh

a b

Figure 3.3: Schematic diagram showing the process of H photoionisation. a.
Initially we have a photon of energy hν hitting an H atom in the n = 1 state.
b. After the interaction, we have an H nucleus (i. e., an HII ion) and a free
electron with a kinetic energy hν − χH (where χH is the ionisation potential
of hydrogen).
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3.2.2 Sources emitting a black body spectrum

Let us consider that we have a star that emits a black body spectrum in
the Wien limit (hν/kT∗ ≫ 1, where T∗ is the black body temperature of the
source). The luminosity per unit frequency emitted by the star then is :

Lν = 4πR∗
2(πBν) ≈ 4πR∗

22πhν
3

c2
e−hν/kT∗ , (3.2)

where c is the speed of light and Bν is the Planck distribution. Using this
form for the frequency-dependent luminosity Lν , eq. (3.1) can be integrated
analytically to obtain :

S∗,bb =
8π2R∗

2

c2

(

kT∗
h

)3
(

x0
2 + 2x0 + 2

)

e−x0 , (3.3)

where x0 ≡ hνH/kT∗. This equation gives a simple prescription for calculating
the ionising photon rate S∗ as a function of the radius R∗ and the black body
temperature T∗ of the source.

3.2.3 Sources with more realistic photon distributions

In practice, the emission from a stellar atmosphere can have quite strong devi-
ations from a black body spectrum. It is possible to integrate eq. (3.1) using
the results obtained from model atmospheres. Table 3.1 gives the effective
temperatures and radii for massive main sequence stars (as a function of the
spectral class), and the ionising photon rates S∗ computed from appropriate
atmosphere models.

Table 3.1 gives the results obtained from such a computation of S∗ (including
also the radius R∗, the luminosity L, the mass M , the terminal wind veloc-
ity vw and the mass loss rate Ṁ) for massive stars with different effective
temperatures Teff , taken from [33].

In Fig. 3.4, we see the values of S∗ from Table 3.1 as a function of Teff , as well
as the S∗,bb obtained from eq. (3.1) for the same values of T∗ = Teff and R∗.
It is clear that for Teff > 4× 104 K, the two values agree well, though not so
for lower temperatures. This can be seen in the lower frame of Fig. 3.4, which
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Table 3.1: Ionising photon rate and other parameters for massive main se-
quence (luminosity class V) stars (from [33])

Spectral Teff R∗ log10 L M vw Ṁ log10 S
Type [K] [R⊙] [L⊙] [M⊙] [km s−1] [M⊙yr

−1] [s−1]
O3 51230 13.2 6.04 87.6 3552 2.7E-6 49.87
O4 48670 12.3 5.88 68.9 3266 1.8E-6 49.68
O4.5 47400 11.8 5.81 62.3 3138 1.4E-6 49.59
O5 46120 11.4 5.73 56.6 3026 1.1E-6 49.49
O5.5 44840 11.0 5.65 50.4 2903 8.9E-7 49.39
O6 43560 10.7 5.57 45.2 2784 7.2E-7 49.29
O6.5 42280 10.3 5.49 41.0 2666 5.6E-7 49.18
O7 41010 10.0 5.40 37.7 2543 4.5E-7 49.06
O7.5 39730 9.6 5.32 34.1 2428 3.5E-7 48.92
O8 38450 9.3 5.24 30.8 2313 2.7E-7 48.75
O8.5 37170 9.0 5.15 28.0 2194 2.1E-7 48.61
O9 35900 8.8 5.06 25.4 2083 1.7E-7 48.47
O9.5 34620 8.5 4.97 23.3 1972 1.3E-7 48.26
B0 33340 8.3 4.88 21.2 1853 1.0E-7 48.02
B0.5 32060 8.0 4.79 19.3 1747 7.8E-8 47.71

27



Figure 3.4: Ionising photon rate S∗ as a function of Teff for massive main
sequence stars. Top: the crosses are the values taken from Table 3.1, and the
solid line gives the S∗,bb computed for a black-body source. Bottom: the ratio
S∗/S∗,bb as a function of Teff (crosses) and the fit described in the text.
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plots the S∗/S∗,bb ratio as a function of Teff . This ratio can be fitted with a
quadratic polynomial of the form :

S∗

S∗,bb

(Teff ) = 2.375 t(1− t/10)− 4.938 ; t = Teff/10
4K , (3.4)

which is shown as a solid curve in Fig. 3.4. This fit has been made for
temperatures in the range 30000 < Teff < 50000 K. It is then possible to use
eq. (3.4) to calculate a correction factor by which one can multiply eq. (3.1)
in order to obtain an ionisation photon rate closer to the one predicted from
stellar atmosphere models.

In order to give a complete prescription of how to compute the ionising photon
rate for luminous stars along the main sequence, we note that the values of R∗

as a function of Teff can be fitted by :

R∗

R⊙

(Teff ) = 8.225− 1.773 t+ 0.535 t2 ; t = Teff/10
4K . (3.5)

Therefore, in order to obtain values of S∗ that basically represent an interpo-
lation in between the ones of Table 3.1, for a given Teff one can first compute
R∗ from eq. (3.5), then insert the values of Teff and R∗ into eq. (3.3) to obtain
S∗,bb, and finally multiply by the correction factor given by eq. (3.4) in order
to obtain the ionising photon rate S∗.

3.3 Strömgren sphere

The simplest possible model for an H II region can be constructed as follows.
We consider a star with an ionising photon rate S∗ which is immersed in
a homogeneous medium of temperature T and H number denisty nH . We
assume that the star photoionises the gas within a sphere of radius RS, and
that the transition between ionised interior and neutral exterior occurs over a
distance ∆R ≪ RS. The balance equation which determines the size of the
“Strömgren sphere” is:

S∗ = Ṅrec , (3.6)

where Ṅrec is the total number of recombinations per unit time within the
sphere. The number of recombinations per unit volume ṅrec is given by:

ṅrec = ne nHIIαH(T ) , (3.7)

29



*
RS

nH, T

Figure 3.5: Schematic diagram showing the configuration of a Strömgren
sphere produced by a star with an ionising photon rate S∗ which is immersed
in a homogeneous medium of temperature T and H atom+ion number density
nH . Within the ionised sphere (R < RS), the gas is almost fully ionised, so
that ne ≈ nHII ≈ nH . For R > RS, ne ≈ nHII ≈ 0 and nHI ≈ nH .

where the recombination coefficient αH(T ) is described in detail below. Within
the ionised sphere, most of the electrons come from the ionised H, so that we
can set ne ≈ nHII ≈ nH . Then, the integral of the eq. (3.7) over the volume
of the sphere (obtained just by multiplying by 4πRS

3/3, as the medium is
assumed to be homogeneous), and substituting into eq. (3.6) one obtains:

S∗ =
4π

3
RS

3nH
2α(T ) → RS =

[

3S∗

4πnH
2α(T )

]1/3

, (3.8)

where the latter equation gives the “Strömgren radius” RS of the ionised
sphere.
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The recombination coefficient α(T ) is calculated as a sum over the recombina-
tion coefficients to all of the energy states of H :

αA(T ) =
∞
∑

n=1

αn(T ) , (3.9)

and the recombination coefficient to state n is given by:

αn(T ) =

∫ ∞

0

σn(v) vf(v, T )dv , (3.10)

where the integral of the product of the Maxwell-Boltzmann distribution f(v, T ),
the effective cross section for the radiative recombination process σn(v) and
the velocity v is carried out over all of the possible values for the velocity of
the electrons.

Actually, the electrons which recombine directly to the ground, n = 1 state
emit a Lyman continuum photon with energy greater than 13.6 eV. Therefore,
these photons contribute to the photoionisation of H atoms in other regions
of the Strömgren sphere. Because of this, a better approximation is to not
consider the recombinations to n = 1 in the recombination coefficient, as these
are “inefficient recombinations” leading to a new photoionisation within the
sphere. It is therefore better to put α(T ) = αB(T ) in eq. (3.8), where

αB(T ) =
∞
∑

n=2

αn(T ) , (3.11)

is called the “case B” recombination coefficient of H (the “case A” recombina-
tion coefficient being given by eq. 3.9).

Tabulations of the recombination coefficients as a function of gas temperature
T are given by Osterbrock[19]. It is possible to carry out simple power law fits
to these tabulations, from which one obtains :

αA(T ) = 4.15× 10−13cm3s−1

(

104K

T

)0.72

, (3.12)

αB(T ) = 2.56× 10−13cm3s−1

(

104K

T

)0.83

. (3.13)
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For the calculation of a Strömgren radius, one then sets αH(T ) ≈ αB(10
4K)

in eq. (3.8). As we shall see below, this is a reasonable value to take for the
recombination coefficient because temperatures of H II regions always have
values T ∼ 104 K.

3.4 Strömgren regions

3.4.1 Generalization of the Strömgren sphere analysis

The simple argument of balancing the ionising photon rate S∗ with the total
recombination rate can be applied to more general cases than the one of a
photoionised region in a homogeneous medium. In the following, three exam-
ples are presented showing how to carry out a “Strömgren region” analysis of
a stratified H II region, of an H II region in which the star moves supersoni-
cally with respect to the surrounding medium, and of an expanding, constant
density H II region.

3.4.2 The photoionisation of a constant velocity wind

Let us consider a stationary wind with a constant velocity vw, independent
of the spherical radius R. The mass Ṁ going through a spherical surface of
radius R is:

Ṁ = 4πR2ρwvw , (3.14)

where ρw is the density of the wind at a radius R. For a stationary wind, Ṁ
is independent of R, and is equal to the rate of mass loss from the star. Eq.
(3.14) then gives the atom+ion number density:

nw(R) =
ρw(R)

m
=

Ṁ

4πmvwR2
, (3.15)

where m is the mass per atom or ion (= mH for a pure H wind, and = 1.3mH

for a wind of 90% H and 10% He).

The balance between ionising and recombination rates (see eq. 3.8 for the case
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of a homogeneous medium) can be written as

S∗ =

∫ RS

R∗

n2
w(R)αH(T ) 4πR

2dR , (3.16)

where nw(R) is given by eq. (3.15), R∗ is the stellar radius and RS is the outer
radius of the photoionised region. We now assume that the wind is isothermal,
and take αH(T ) ≈ αB(10

4K) out of the integral.

Eq. (3.16) can be integrated and then inverted to obtain:

RS

R∗

=

(

1− S∗

S0

)−1

; S0 ≡
Ṁ2αB

4πR∗vw2m2
, (3.17)

which is plotted in Fig. 3.6. It is clear that RS → ∞ for S∗ → S0. For S∗ > S0,
the recombination rate in the full volume of the wind (out to R → ∞) is smaller
than the ionising photon rate S∗.

From Table 3.1, one can check numerically that S∗/S0 ≫ 1 for all massive
main sequence stars. Therefore, these stars only use a very small fraction of
their ionising photon production in order to fully photoionise their own winds.

3.4.3 Cometary H II region

Let us consider a star with an ionising photon rate S∗ moving at a velocity v∗
through a homogeneous medium of density nH . We will assume that the star
has no wind, and that the formation of the H II region does not lead to any
modification of the initially homogeneous density of the surrounding medium.
This latter assumption is valid provided that v∗ is highly supersonic.

If we stand in a reference system travelling with the star, the problem corre-
sponds to a stationary star and an environment that travels at a velocity v∗
towards it. This configuration is shown in Fig. 3.7.

We place an axis directed towards the impinging flow (see Fig. 3.7) and con-
sider the spherical radius R and cylindrical radius r of the edge of the H II
region, both dependent on the angle θ between the point on the edge of the
H II region and the axis (the spherical and cylindrical radii are related through
r = R sin θ). The angle θ subtends a solid angle ∆Ω = 2π(1− cos θ).
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Figure 3.6: Solution for the Strömgren radius of a region with an R−2 density
stratification. The Strömgren radius goes to infinity for S∗/S0 → 1 (see the
text).

Let us now consider the ionising photons S∗∆Ω/(4π) emitted per unit time
by the source into the solid angle ∆Ω. These photons have to balance the
recombinations Ṅrec(θ) in the ionised volume V (θ) subtended by the angle θ
and also have to ionise the neutrals that enter from the upstream direction
into the ionised region Ṅin(θ) per unit time into this volume. In other words :

S∗

4π
∆Ω = Ṅrec(θ) + Ṅin(θ) , (3.18)

where ∆Ω = 2π(1− cos θ) is the solid angle subtended by the angle θ.

The total number of recombinations per unit time can be written as:

Ṅrec(θ) = nH
2αHV (θ) ; V (θ) =

2π

3

∫ θ

0

R3 sin θ dθ , (3.19)

where V (θ) is the ionised volume limited by θ. The number of neutral atoms
that enter through the boundary of the H II region per unit time is Ṅin(θ) =
πr2nHv∗.
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Figure 3.7: Schematic diagram showing a cometary H II region formed around
a star which travels at a velocity v∗ through a homogeneous ISM of density
nH .
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Equation (3.18) has a general analytic solution in terms of elliptic integrals (see
Rasiwala[26]). A simple, high v∗ solution can be obtained noting that for larger
values of v∗, Ṅin grows linearly with v∗. Instead, Ṅrec actually decreases with
increasing values of v∗. Therefore for a high enough v∗ we have Ṅin ≫ Ṅrec,
and equation (3.18) becomes:

S∗

4π
∆Ω ≈ Ṅin(θ) . (3.20)

If we substitute the appropriate expressions for the solid angle and for the rate
of neutrals entering the H II region, we then obtain the solution:

r(θ) =

√

S∗

2πnHv∗
(1− cos θ) . (3.21)

For θ = 0, this solution has an on-axis separation

R0 = lim
θ→0

r(θ)

sin θ
=

√

S∗

4πnHv∗
, (3.22)

between the star and the “head” of the cometary H II region (see Fig. 3.7).
For θ → π, the edge of the H II region reaches a maximum separation

rm =

√

S∗

πnHv∗
, (3.23)

with respect to the symmetry axis. This solution was apparently first deduced
by Rasiwala[26].

One can show that the approximation of neglecting the recombinations within
the H II region in the balance equation (eqs. 3.18 and 3.20) is correct pro-
vided that the on-axis standoff distance R0 (eq. 3.22) satisfies the condition
R0 ≪ RS, where RS is the “standard” Strömgren radius, defined by eq. (3.8).
Through some simple algebra, this condition can be rewritten as

v∗ ≫ vS ≡
(αB

3

)2/3
(

nHS∗

4π

)1/3

. (3.24)

For example, for an O5 star moving into a medium with nH = 1 cm−3, we
have vS ≈ 260 km s−1 (where we have used the value for S∗ from Table 3.1
and for αB at 104 K from eq. 3.13).
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By differentiating with respect to θ (see [22]), the full balance equation (eqs.
3.18-3.19) can be written as

(

R

RS

)3

+ ξ

(

R

RS

)

[(

Ṙ

RS

)

sin θ +

(

R

RS

)

cos θ

]

= 1 , (3.25)

where RS is given by eq. (3.8), Ṙ = dR/dθ and ξ ≡ v∗/vS (see eq. 3.24). One
can show that for ξ ≫ 1 one obtains the solution described above (eq. 3.21).
Also, this equation has an analytic solution for the ξ ≪ 1 limit :

R(θ) = RS (1− ξ cos θ)1/3 . (3.26)

This solution was apparently first found by Raga et al.[22].

For calculating the shape of the cometary HII region for an arbitrary value of ξ,
it is necessary to evaluate the elliptical integrals in the solution of Rasiwala[26],
or, alternatively, to integrate numerically equation (3.25).

3.4.4 The initial expansion of an H II region

Let us now consider the problem of a homogeneous H II region in which the
star “turns on” at t = 0, emitting a constant S∗ ionising photon rate for t > 0.
The outer radius R of the H II region is initially zero (actually, equal to R∗ and
not strictly 0), and grows monotonically with time until it reaches the value
of the Strömgren radius RS (see eq. 3.8). If we neglect the light-crossing time
in which the ionising photons travel from the star to the outer radius of the
nebula, we can write the balance equation

S∗ =
4π

3
R3nH

2αB + 4πR2F , (3.27)

where R is the (time-dependent) outer radius of the H II region and F is
the ionising photon flux (number of ionising photons per unit area and time)
reaching the outer boundary of the nebula. Each of these photons ionises a
new H atom, so that

F = nH
dR

dt
. (3.28)

Combining eqs. (3.27-3.28), one obtains

dR

dt
=

S∗

4πR2nH

− nHαBR

3
, (3.29)
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Figure 3.8: Solution for the time-dependent radius of an expanding, constant
density H II region (see the text). It is clear that for t > 3tR, the radius
approaches RS.

which can be integrated to obtain

R(t) = RS

(

1− e−t/tR
)1/3

, (3.30)

with

tR ≡ 3

nHαB

; RS ≡
(

3S∗

4πnH
2αB

)1/3

. (3.31)

Using the value of αB(10
4K) (see eq. 3.13) and nH = 1 cm−3, we obtain

tR = 1.24× 105 yr. The solution for the expansion of the H II region is shown
in Fig. 3.8.

3.5 The structure of the ionisation front

The outer boundary of an H II region is called an “ionisation front” (with
H in the form of H II inside the boundary, and H as H I outside). In the
treatment above we have assumed that this transition region between H II
and H I has a negligible thickness ∆R ≪ RS. In this section we will present

38



an approximate model describing this transition region, from which we can
obtain an evaluation of the value of ∆R.

Let us first consider the ionisation equilibrium for H, which is dominated by
the processes of photoionisation and radiative recombination :

nHIφH = nenHIIαH , (3.32)

where φH is the photoionisation rate per neutral H atom :

φH =

∫ ∞

νH

4πJν
hν

σν dν , (3.33)

with σν the photoionisation cross section of H and

Jν =
1

4π

∮

IνdΩ , (3.34)

the zero-order moment of the specific intensity Iν . If the ionising photons only
come from the star (in other words, neglecting, e. g., the Lyman continuum
photons emitted by the nebula), we have

4πJν =
Lν

4πR2
e−τν ; τν =

∫ R

0

nHIσν dR . (3.35)

As we will see below, the photoionisation cross section of H has a frequency
dependence σν ∝ ν−3, which is very slow compared with the fast drop of
the distribution Lν/(hν) of the far-UV stellar photons. Therefore, the terms
involving σν can be taken out of the frequency integral in eq. (3.33), so that
we obtain

φH =

∫ ∞

νH

Lν

4πR2hν
e−τνσνdν ≈ σνHF , (3.36)

with

F ≡ S∗

4πR2
e−τνH . (3.37)

Now, provided that the thickness of the ionisation front is indeed small com-
pared to RS (this will be shown to be indeed the case with the model that we
are developing), in eq. (3.37) we can put R = RS (i. e., a constant geometrical
dilution throughout the radial structure of the ionisation front). We then have

dF

dl
= −FnHIσνH , (3.38)
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where l = R−RS is a radial coordinate measured with respect to the Strömgren
radius.

We now introduce the ionisation fraction of H : x = nHII/nH . It is clear that
nHII = xnH and nHI = (1 − x)nH . The ionisation equilibrium equation (eq.
3.32) then takes the form:

x2

1− x
=

φH

nHαH

=
σνH
nHαH

F , (3.39)

where for the second equality we have used eq. (3.36). From eq. (3.39) we can
find F in terms of x, and differentiate with respect to l = R−RS to obtain:

dF

dl
=
nHαH

σνH

d

dl

(

x2

1− x

)

=
nHαH

σνH

x(2− x)

(1− x)2
dx

dl
. (3.40)

We now combine equations (3.38) and (3.40) to obtain

dx

dl
= −nHσνH

x(1− x)2

2− x
, (3.41)

which can be integrated to obtain:

2 ln

(

x

1− x

)

+
1

1− x
= 2− l

λ
, (3.42)

where λ = (nHσνH )
−1 is the photon mean free path in a neutral medium

of density nH . In order to derive this equation we have used the boundary
condition x(l = 0) = 1/2 (i. e., x = 1/2 at the Strömgren radius).

This solution is plotted in Fig. 3.9, from which we see that the thickness of
the ionisation front is ∆R ≈ 10λ. Using the fact that σνH ≈ 6.3× 10−18 cm2,
we obtain ∆R ≈ 1.6× 1017cm (1 cm−3/nH), which can be compared with the
Strömgren radii predicted for different O/B stars (see Table 3.1 and eq. 3.8)
to see that we indeed have ∆R ≪ RS.
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Figure 3.9: Solution for the structure of the ionisation fraction x as a function
of the dimensionless distance l/λ from the Strömgren radius (see the text).

3.6 The ionisation of a nebula with many ele-

ments

3.6.1 The rate equations

For the sake of simplicity, in this section we consider the case of a constant
density gas, for which the equations for an atomic/ionic network are :

dna,z

dt
= Sc

a,z + Sph
a,z , (3.43)

with the collisional (Sc) and photoionisation (Sph) source terms being given
by

Sc
a,z = ne [na,z−1ca,z−1 + na,z+1αa,z+1 − na,z (ca,z + αa,z)] , (3.44)

Sph
a,z = na,z−1φa,z−1 − na,zφa,z . (3.45)

If the na,z are known, the electron density can be computed as:

ne =
∑

a

∑

z

z na,z . (3.46)
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3.6.2 Ionisation equilibrium

The time-evolution of the ionisation rate equations leads to a final equilibrium
for which dna,z/dt = 0 for all a and z. From eqs. (3.43-3.45) it can be shown
that this condition results in the system of equations :

na,z (neca,z + φa,z) = na,z+1neαa,z+1 . (3.47)

3.6.3 The collisional rate coefficients

The collisional ionisation (c) and radiative+dielectronic recombination (α) co-
efficients are functions of temperature T given by integrals of the form

α(T ), c(T ) =

∫ ∞

0

f(v, T )σv v dv , (3.48)

where f(v, T ) is the Maxwell-Boltzmann distribution for the electrons, and
σv is the velocity-dependent collision cross section for the appropriate process.

It is common to give analytic fits to these coefficients in the “Arrhenius inter-
polation” form :

r(T ) = b1 T
b2 eb3/T . (3.49)

As an example of other formulae, Aldrovandi & Péquignot ([2], [3]) have used
an interpolation

r(T ) = b1

(

T

104

)−b2

+ b3T
−3/2 exp (−b4/T ) [1 + b5 exp (−b6/T )] , (3.50)

for recombination coefficients.

Then, the b1, b2, ... coefficients are tabulated for all of the ionisation and
recombination processes that have to be considered. An example of such a
tabulation is given in Table 3.2.

Finally, we should note that for some atoms and ions, in the collision source
term Sc

a,z (see eq. 3.44) one also has to include “charge exchange” reactions
with H. An example of important charge exchange reactions are the processes

42



Table 3.2: Ionisation, recombination and charge exchange coefficients.

reaction coefficientsa

e + HI → 2e + HII 1: 5.83× 10−11, 0.5, -157800
e + HII → HI 1: 3.69× 10−10, -0.79, 0
e + HeI → 2e + HeII 1: 2.707× 10−11, 0.5, -285400
e + HeII → HeI 2: 4.3× 10−13, 0.672, 0.0019,

4.7× 105, 0.3, 94000
e + HeII → 2e + HeIII 1: 5.711× 10−12, 0.5, -631000
e + HeIII → HeII 1: 2.21× 10−9, -0.79, 0
e + CII → 2e + CIII 1: 3.93× 10−11, 0.5. -283000
e + CIII → CII 2: 3.2× 10−12, 0.770, 0.038,

9.1× 104, 2.0, 3.7× 105

e + CIII → 2e + CIV 1: 2.04× 10−11, 0.5, -555600
e + CIV → CIII 2: 2.3× 10−12, 0.645,

7.03× 10−3, 1.5× 105,
0.5, 2.3× 105

e + NI → 2e + NII 1: 6.18× 10−11, 0.5 -168200
e + NII → NI 2: 1.5× 10−12, 0.693, 0.0031

2.9× 105, 0.6, 1.7× 105

e + NII → 2e + NIII 1: 4.21× 10−11, 0.5, -343360
e + NIII → NII 2: 4.4× 10−12, 0.675, 0.0075

2.6× 105, 0.7, 4.5× 105

e + OI → 2e + OII 1: 1.054× 10−10, 0.5, -157800
e + OII → OI 2: 2.0× 10−12, 0.646, 0.0014

1.7× 105, 3.3, 5.8× 104

e + OII → 2e + OIII 1: 3.53× 10−11, 0.5, -407200
e + OIII → OII 2: 3.1× 10−13, 0.678, 0.0014

1.7× 105, 2.5, 1.3× 105

e + OIII → 2e + OIV 1: 1.656× 10−11, 0.5, -636900
e + OIV → OIII 2: 5.1× 10−12, 0.666, 0.0028

1.8× 105, 6.0, 91000
e + SII → 2e + SIII 1: 7.12× 10−11, 0.5, -271440
e + SIII → SII 2: 1.8× 10−12, 0.686, 0.0049

1.2× 105, 2.5, 88000
HI + NII → HII + NI 1: 1.1× 10−12, 0, 0
HII + NI → HI + NII 1: 4.95× 10−12, 0. -10440
HI + OII → HII + OI 1: 2.0× 10−9, 0, 0
HII + OI → HI + OII 1: 1.778× 10−9, 0, -220

aThe interpolation formulae are of the form “1:” Arrhenius, or “2:” Aldrovandi &
Péquignot (1973), see equations (3.49) and (3.50).
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HII + OI → HI + OII and HI + OII → HII + OI (see Table 3.2). These pro-
cesses have rates of the form nHIInOIq(T ) and nHInOIIq

′(T ), respectively, with
the rate coefficients q(T ) and q′(T ) also given as tabulations or by Arrhenius
interpolations (see Table 3.2).

3.6.4 The photoionisation rates

The photoionisation rates are calculated as a function of the average intensity
Jν of the radiative field through the frequency integrals

φa,z =

∫ ∞

νa,z

4πJν
hν

σa,z(ν) dν , (3.51)

where ν is the frequency, νa,z = χa,z/h is the frequency of the ionisation
edge and σa,z(ν) is the photoionisation cross section. Here again, one can find
tabulations of coefficients of power law interpolations for the σa,z(ν) (see, e. g.,
any of the versions of the book of Osterbrock[19]).

The problem of course is that one has to solve a system of radiative transfer
equations of the form:

dIν
dl

= jν − κνIν , (3.52)

for the specific intensity Iν (jν and κν being the emission and absorption
coefficients, respectively). This is a system of equations, since one has to solve
this for many propagation directions (l being the distance element along a given
direction) and frequencies. Clearly, only rays passing through the position of
the central star have to be considered if one does not include the diffuse ionising
photon field (i. e., the far UV radiation produced by the nebular gas itself).
Models including the diffuse field (with different approximations, as well as full
solutions of the radiative transfer problem) have been present in the literature
since the 1970’s.

After integrating these radiative transfer equations, one can then carry out the
appropriate angular average

Jν =
1

4π

∮

IνdΩ , (3.53)

in order to obtain the average intensity of the radiative field.
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3.6.5 Coronal ionisation equilibrium

If the collisional ionisation rates dominate over the photoionisation rates, eq.
(3.47) takes the form :

na,zca,z = na,z+1αa,z+1 . (3.54)

As can be seen, this system gives ionisation fractions

ya,z =
na,z

na

, with na =
∑

z

na,z , (3.55)

which are exclusively a function of T . This result holds if charge exchange
reactions are included. The resulting ionisation fractions yca,z(T ) are called
the “coronal ionisation equilibrium” state.

Clearly, if we have an ionisation fraction ya,z > yca,z(T ), then ya,z will evolve
to a lower value with time, and the reverse is true for ya,z < yca,z(T ).

As an example, let us consider the coronal ionisation equilibrium for H. Eq.
(3.54) then gives:

nHIc(T ) = nHIIα(T ) . (3.56)

We can combine this equation with nH = nHI + nHII to obtain:

yHII =
nHII

nH

=
1

1 + α(T )/c(T )
, (3.57)

where the Arrhenius interpolations for the coefficients are α(T ) = 3.69 ×
10−10T−0.79 and c(T ) = 5.83 × 10−11T 0.5 e−157800/T (see equation 3.49 and the
first two lines of Table 3.2). The hydrogen ionisation fraction yHII as a function
of temperature T obtained from eq. (3.57) is shown in Fig. 3.10.

3.6.6 Photoionisation equilibrium

If the photoionisation rates dominate over the collisional ionisation rates, eq.
(3.47) takes the form :

na,zφa,z = nena,z+1αa,z+1 . (3.58)

This is the system of equations which describe the ionisation state of a sta-
tionary H II region. An example of a simplified solution for a pure H region is
given in §1.5.
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Figure 3.10: Coronal ionisation fraction of H as a function of temperature.

3.7 The energy balance and the heating rate

In order to obtain the thermal structure of a photoionised region it is necessary
to integrate a differential equation of the form

3

2

d

dt
(n+ ne)kT = Γ− L , (3.59)

where n is the atom+ion number density, ne the electron density, k Boltz-
mann’s constant, and Γ and L the energy gain and loss (respectively) per unit
volume and time of the gas. This equation is valid for a nebula in which
the mass density is time-independent. This “isochoric” (i.e., constant density)
equation for the thermal energy is a special case of the general energy equation
for a gas, derived in section 5.6.

For a steady-state nebula, the time derivative in eq. (3.59) is equal to zero,
and the energy balance equation is simply

Γ = L . (3.60)
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In photoionised regions, the energy gain is due to the process of photoionisa-
tion, which introduces “hot” electrons into the gas. The heating therefore is
a sum of terms due to the photoionisation of the different ions present in the
gas, though in practice the dominant heating process is the photoionisation of
HI, with smaller contributions due to the photoionisation of HeI and HeII.

The heating per unit time and volume due to the photoionisation of ion a, z is
given by Γa,z = na,zψa,z, with

ψa,z =

∫ ∞

νa,z

4πJν
hν

h (ν − νa,z) σa,z(ν) dν . (3.61)

The integrals in the heating rate terms generally are done numerically. For
the case in which the frequency dependence of the incident spectrum is given
by a Planck function in the Wien limit at a temperature T∗, the integral in eq.
(3.61) can be carried out analytically, if one also assumes that the σa,z(ν) is a
slow enough function so that it can be taken out of the integral as σa,z(νa,z).
In this case, one obtains:

ψa,z = φa,zkT∗

(

x0
2 + 4x0 + 6

x02 + 2x0 + 2

)

, (3.62)

where φa,z is the photoionisation rate and x0 = hνa,z/(kT∗).

3.8 The cooling function

3.8.1 Introduction

In this section, we describe in some detail how to include the more important
contributions to the cooling due to different processes. Actually, the cooling is
dominated by collisional excitation of emission lines. We describe the radiative
recombination and free-free losses only because it is very simple to include
them, though they do not make an important contribution to the cooling
function (at least for a gas with solar abundances).
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3.8.2 Recombination and free-free cooling

When an electron passes by an ion and recombines, the kinetic energy of
the electron is lost from the thermal energy reservoir. Analogously, when an
electron loses kinetic energy in an inelastic collision (with the resulting emission
of a photon), the thermal energy of the gas is reduced.

The free-free energy loss (per unit time and volume) due to the interaction of
H ions and free electrons is given by :

Lff (HII) = nenHIIβff (T ) , (3.63)

where the interpolation formula

βff (z, T ) = 1.846× 10−27z2T 1/2 , (3.64)

can be used (see the book of Osterbrock[19]). In this interpolation function,
one has to set a charge z = 1 for HII. One can use the same function (i. e., with
z = 1) for calculating the free-free losses due to HeII ions. This is of course not
correct because HeI is not a hydrogenic ion, introducing a substantial error,
but this point is normally not further explored due to the fact that the H free-
free cooling dominates by an order of magnitude over the He cooling. Equation
(3.64) with z = 2 of course gives the correct cooling function for HeIII ions.

The radiative losses due to recombination of HII are given by :

Lrec(HII) = nenHIIβrec(T ) , (3.65)

where the interpolation formula

βrec(t) = 1.133× 10−24t−1/2
(

−0.0713 + 0.5 ln t+ 0.640t−1/3
)

(3.66)

with t = 157890/T (see Seaton 1959). The contribution of the recombination
of He ions can be computed with the scaling

βrec(z, T ) = zβrec(1, T/z
2) , (3.67)

with z = 1 for HeII and z = 2 for HeIII.
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3.8.3 Collisional ionisation

The energy loss due to collisional ionisation of the ion a, z can be written as

Lion
a,z = nena,zca,z(T )χa,z , (3.68)

where ca,z(T ) is the collisional ionisation coefficient and χa,z the ionisation
potential of the ion a, z.

The terms that dominate the collisional ionisation cooling are the ionisation
of HI, HeI and HeII. These terms dominate the cooling function for a neutral
gas that is suddenly shocked to a temperature above a few times 104 K.

3.8.4 Collisionally excited lines

For each atom or ion that contributes substantially to the cooling function, one
has to solve a system of equations giving the populations of the excited levels
nl (l = 1, 2, ...., N numbering all of the relevant levels in order of increasing
energy) of the ion a, z. Of course, we have the relation:

na,z =
N
∑

l=1

nl . (3.69)

Once we have computed the nl populations, we can compute the energy loss
due to the collisional excitation of all of the relevant levels of the ion a, z as

Lcol
a,z =

N
∑

l=2

nl

∑

m<l

Al,mhνl,m , (3.70)

where Al,m is the Einstein A coefficient for the spontaneous transition l → m
and hνl,m is the energy associated with this transition.

The non-trivial problem of finding the populations nl of the excited levels
of course still remains. Because the relaxation time for the excitation/de-
excitation of the levels is generally much shorter than the cooling and/or dy-
namical timescales of the flow, the calculation of the nl is usually done under
a statistical equilibrium assumption. The equilibrium condition results in the
set of equations :

∑

m>l

nmAm,l + ne

∑

m 6=l

nmqm,l(T ) = nl

[

∑

m<l

Al,m + ne

∑

m 6=l

ql,m(T )

]

, (3.71)
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where we have introduced the qm,l(T ) which are the radiative excitation (m <
l) or de-excitation (m > l) coefficients. For m > l, these coefficients are given
by the expression

qm,l(T ) =
8.629× 10−6

T 1/2

Ωml(T )

gm
, (3.72)

where gm is the statistical weight of the level at which the transition begins.
The collisional excitation coefficients (i.e., l → m with m > l) are given by the
relation:

ql,m(T ) =
gm
gl
e−hνm,l/kT qm,l(T ) . (3.73)

The function Ωml(T ) has a value of order 1, and is only slowly dependent
on T . In many calculations, these “collision strengths” are considered to be
constant, and taken from tabulations such as the classical one of Mendoza
(1983). However, in our modern electronic world there is the database of the
Arcetri/Cambridge/NRL “CHIANTI” atomic data collaboration 1 which has
tabulations of the collision strengths and the Einstein A coefficients of most of
the transitions we have ever known.

We now proceed as follows. We assume that the A and q coefficients are known,
as well as the temperature T (obtained, e. g., from a dynamical simulation)
the electron density ne and the ionic number density na,z (both obtained from
the relevant statistical equilibrium or from a solution of the non-equilibrium
ionisation rate equations). We can then invert the system of linear eqs. (3.69)
and (3.71) in order to find the populations nl (l = 1 → N) of the excited levels
of the ion a, z.

Let us show how the equations look for a 3-level atom (N = 3). Eq. (3.69)
takes the form:

n1 + n2 + n3 = na,z . (3.74)

Now, for l = 1, from eq. (3.71) we obtain

n1 [−ne(q12 + q13)] + n2(A21 + neq21) + n3(A31 + neq31) = 0 , (3.75)

and for l = 2, we obtain :

n1neq12 + n2 [−A21 − ne(q23 + q21)] + n3(A32 + neq32) = 0 . (3.76)

1http://www.arcetri.astro.it/science/chianti/database/
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For l = 3, we obtain an equation that is a linear combination of eqs. (3.75-
3.76).

Now, the system of 3 linear equations (3.74-3.76) can be inverted in order to
find n1, n2 and n3 as a function of na,z, ne and T .

3.8.5 The 2-level atom

Let us now consider a 2-level atom (N = 2). Eq. (3.69) takes the form:

na,z = n1 + n2 , (3.77)

and eq. (3.71) takes the form:

n1neq12 = n2(neq21 + A21) . (3.78)

These two equations can be combined with eq. (3.73) to obtain :

n2 =
na,z

(g1/g2)eE21/kT + 1 + nc/ne

, (3.79)

where the critical density is defined as nc ≡ A21/q12. Then, for ne ≪ nc (the
“low density regime”), we have

n2 =
na,zneq12
A21

, (3.80)

and for ne ≫ nc (the “high density regime”), we have

n2 =
na,zg2e

−E21/kT

g1 + g2e−E21/kT
, (3.81)

which is the Boltzmann distribution (local thermodynamic equilibrium or
LTE) population of level n2.

The energy loss associated with the transition between levels 2 and 1 is :

L21 = n2A21hν21 , (3.82)

which for the low density regime then takes the form:

L21 = na,zneq12hν21 , (3.83)
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and for the high density regime becomes:

L21 = n2(LTE)A21hν21 , (3.84)

These equations illustrate the well known fact that the collisionally excited
line cooling function depends quadratically on the density for the “low density
regime” and linearly for the “high density regime”.

3.9 The temperature of an HII region

In order to obtain an estimate of the temperature of a photoionised region, we
consider the balance between the heating due to H photoionisation :

Γ ≈ nHIφHIkT∗ , (3.85)

where T∗ is the black-body temperature of the star (see equations 3.61-3.62),
and the cooling due to the collisional excitation of a single line of OII :

L = nenOIIq12(T )hν12 , (3.86)

in the low density regime (see equation 3.83). This is of course an underes-
timate of the real cooling function, which has contributions from many colli-
sionally excited lines.

We first use the H photoionisation equilibrium condition (see equation 3.32)

nHIφH = nenHIIαH(T ) (3.87)

and consider that inside the HII region we have ne ≈ nHII ≈ nH to obtain an
estimate of the neutral H density :

nHI ≈
n2
HαH(T )

φH

. (3.88)

Substituting this estimate of nHI in the heating term (equation 3.85), we then
obtain :

Γ ≈ n2
HαH(T )kT∗ , (3.89)

where from Table 3.2 we have αH(T ) = 3.69× 10−10T−0.79 (in c.g.s.).
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For the cooling function, we assume that inside the HII region nOII ≈ nO ≈
10−4nH , and that the transition has an energy hν21 ∼ 1 eV (so that hν12/k ≈
104 K). Using the temperature dependence of the collisional excitation coeffi-
cient (see equations 3.72-3.73) we then obtain

L ≈ 10−4n2
H

8.6× 10−6Ω21

T 1/2g1
e−104/T , (3.90)

where we can set Ω21 ∼ g1 ∼ 1.

Finally, using equations (3.89-3.90), the energy gain/loss balance condition
(equation 3.60) Γ = L gives :

T =
104K

0.29 lnT − 0.542
, (3.91)

for a T∗ = 4× 104K stellar temperature.

Through a few iterations, it can be shown that the solution to this transcen-
dental equation is T ≈ 5200 K. More detailed solutions to the energy balance
equation (including cooling through many lines, with the correct atomic pa-
rameters) typically give temperatures in the 5000 → 10000 K range.

Two interesting points should be noted:

� the temperature resulting from the energy balance is independent of
the density of the gas. This result is preserved if one includes a more
detailed cooling function, provided that the collisionally excited lines
(which dominate the radiative cooling) are in the low density regime,

� very similar temperatures for the nebula are obtained no matter what
is the value of the stellar temperature T∗. This is a result of the fact
that the collisional excitation coefficients have a very strong temperature
dependence at temperatures T ∼ hνij/k, and that the fine structure lines
of many ions have energies ∼ 1eV (corresponding to ∼ 104 K). This
high temperature dependence of the cooling function fixes the nebular
temperature at ∼ 104 K for a wide range of possible values for the energy
gain term.
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Chapter 4

The emitted spectrum

4.1 Emission lines

In the previous chapter, we have discussed how to calculate the populations
of the excited levels of an atom or ion, with the objective of the calculation
of the cooling due to collisionally excited lines. We now present the general
statistical equilibrium equations for the populations of the excited levels of
atoms/ions in the ISM :

∑

m>l

nmAm,l + ne

∑

m 6=l

nmqm,l(T ) + ne na,z+1αz+1,l(T ) =

nl

[

∑

m<l

Al,m + ne

∑

m 6=l

ql,m(T )

]

, (4.1)

which coincides with eq. (3.71) with the exception of the second term on
the left hand side of the equation, which represents the recombinations of
the higher ionisation state a, z + 1 to the excited level l of the ion a, z. The
radiative+dielectronic recombination coefficient for this process is αz+1,l(T ).

Missing from eq. (3.71) are:

� collisional ionisation from the excited levels (a process that is important
in higher density gas, e.g., in stellar atmospheres),
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� stimulated radiative transitions (important in masers, but generally not
elsewhere in the ISM).

This system of equations gives the populations of the excited levels nl (l =
1, 2, ...., N numbering all of the relevant levels in order of increasing energy)
of the ion a, z. These equations have to be supplemented with the relation

na,z =
N
∑

l=1

nl . (4.2)

4.2 Recombination lines

In HII regions, the populations of the excited levels of HI, HeI and HeII are
determined mostly by the processes of recombination (of HII, HeII and HeIII,
respectively) to excited levels and spontaneous, radiative transitions to lower
levels. These processes are represented by the first and third terms on the left
and the first term on the right of eq. (4.1). The lines of H and He in HII
regions are therefore called “recombination lines”.

The lines of H (resulting from transitions from energy level N to N ′) are named
according to the end state (N ′) and to the jump in energy quantum number
(∆N = N −N ′). For N ′ = 1, 2, 3, . . . we have:

1. N ′ = 1: Lyman series lines,

2. N ′ = 2: Balmer series lines,

3. N ′ = 3: Paschen series lines,

4. N ′ = 4: Brackett series lines,

5. N ′ = 5: Pfund series lines,

6. N ′ = 6: Humphreys series lines.

For ∆N = 1, 2, 3, . . ., the lines are denominated α, β, γ, . . ., respectively.

The Lyman series lines are denoted as Lyα (2 → 1 transition), Lyβ (3 → 1
transition), Lyγ, . . .. The Balmer series are denoted as Hα (3 → 2 transition),
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Hβ (4 → 2 transition), Hγ, . . . (these are the stronger H lines observed at
optical wavelengths). Prefixes “Pa”, “Br” and “Pf” are used for the Paschen,
Brackett and Pfund series lines, respectively.

4.2.1 The recombination cascade

Let us consider the excited levels of H. These levels are specified with two
quantum numbers: N, L, with N ≥ 1 (the energy quantum number) and
1 ≤ L ≤ N (the angular momentum quantum number). The spontaneous
radiative transition rates are given by the Einstein coefficients ANL,N ′L′ which
have non-zero values (for Hamiltonians in the dipole approximation) only for
L′ = L± 1.

The energies of the excited levels of H only depend on the energy quantum
number N , and are given by

EN = −χH

N2
, (4.3)

where χH = 13.6 eV is the ionisation potential from the ground state of H.

The system of equations of statistical equilibrium for the populations nNL of
the excited levels of HI (see eq. 4.1) then is:

nenHIIαNL(T ) +
∞
∑

N ′=N+1

∑

L′=L±1

nN ′L′AN ′L′,NL = nNL

N−1
∑

N ′=1

∑

L′=L±1

ANL,N ′L′ .

(4.4)
If the ANL,N ′L′ and αNL(T ) coefficients are known, this system of equations
can be inverted to find the level populations nNL.

The most simple way of constructing the inversion is as follows. One first
defines the “branching ratio” :

PNL,N ′L′ =
ANL,N ′L′

∑N−1
N ′′=1

∑

L′′=L±1ANL,N ′′L′′

, (4.5)

which gives the probability that a radiative transition out of level NL is a
direct transition to N ′L′. Clearly, PNL,N ′L′ 6= 0 only if L′ = L± 1.

We now calculate the “cascade matrix” CNL,N ′L′ as the probability that a
transition down from NL reaches N ′L′ either through a direct transition or
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via one or more transitions through intermediate levels. For N ′ = N − 1 it is
clear that we have:

CNL,N−1L′ = PNL,N−1L′ . (4.6)

For N ′ = N − 2:

CNL,N−2L′ = PNL,N−2L′ +
∑

L′′=L′±1

CNL,N−1L′′PN−1L′′,N−2L′ . (4.7)

If we now define
CNL,NL′ = δLL′ , (4.8)

we can write the general expression (for arbitrary N ′ < N) as:

CNL,N ′L′ =
N
∑

N ′′=N ′+1

∑

L′′=L′±1

CNL,N ′′L′′PN ′′L′′,N ′L′ . (4.9)

Once the cascade matrix has been computed, the solutions to the equilibrium
equations (4.4) can be obtained from the relation

nenHII

∞
∑

N ′=N

N ′−1
∑

L′=0

αN ′L′(T )CN ′L′,NL = nNL

N−1
∑

N ′′=1

∑

L′′=L±1

ANL,N ′′L′′ . (4.10)

This system of equations gives the level populations nNL as a function of ne,
nHII and the temperature T . Once the level populations have been computed,
we can compute the emission coefficients for the N → N ′ transitions as :

jNN ′ =
hνNN ′

4π

N−1
∑

L=0

∑

L′=L±1

nNLANL,N ′L′ ≡ nenHIIα
eff
NN ′(T )

hνNN ′

4π
. (4.11)

The second equality is the definition of the “effective recombination coefficient”
(for the N → N ′ transition).

The recombination cascade is usually calculated under two possible assump-
tions :

� case A: that all of the lines are optically thin,

� case B: that the Lyman lines (i. e., the transitions to the 1s level) are
optically thick.
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The recombination cascade as derived in this section corresponds to “case A”.
For “case B”, the same equations apply if one sets to zero the Einstein A
coefficients for all Lyman lines (i. e., ANL,1s = 0). It is also possible (in the
context of a numerical model) to solve the radiative transfer in the Lyman
lines, obtaining a gradual transition between cases A and B as the successive
Lyman lines become optically thick.

4.2.2 Including collisions

For higher values of the energy quantum number N , collisions between protons
and HI atoms producing transitions with ∆L = 1 and ∆N = 0 become pro-
gressively more important. Also, for temperatures > 12000 K, collisions with
electrons become important for producing transitions with ∆N 6= 0. Including
these processes, the statistical equilibrium condition for level NL becomes:

nenHIIαNL(T ) +
∞
∑

N ′=N+1

∑

L′=L±1

nN ′L′AN ′L′,NL+

∑

L′=L±1

nHIInNL′qNL′,NL(T ) +
∑

N ′ 6=N

∑

L′=L±1

nenN ′L′qN ′L′,NL(T ) =

nNL

[

N−1
∑

N ′=1

∑

L′=L±1

ANL,N ′L′ +
∑

L′=L±1

nHIIqNL,NL′(T ) +
∑

N ′ 6=N

∑

L′=L±1

neqNL,N ′L′(T )

]

.

(4.12)

The collisional rates can be calculated as a function of the collision strengths
as:

qNL,N ′L′(T ) =
8.629× 10−6

T 1/2

ΩNL,N ′L′(T )

2(2L+ 1)
, (4.13)

which can be obtained from eq. (3.72) by setting gNL = 2(2L+ 1).

The Einstein A coefficients, and interpolations for the recombination coeffi-
cients and the collision strengths for the N = 1 → 5 levels of H are given in
Tables 4.1-4.5. The recombination coefficient fits were carried out with the data
in the rrc98## h1.dat file of the Open-ADAS database. The electron collision
strengths are fits to data in the copha#h hal96h.dat and hlike aek89h.dat files
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Table 4.1: Energies and α’s for the N = 1 → 5 levels of H

level EN [cm−1] log10(α) = b0 + b1t+ b2t
2 + b3t

3 ; t = log10(T )
1 : 1s 0 -9.9506 -1.2751 0.2385 -0.0244
2 : 2s 82259 -10.938 -1.1858 0.2235 -0.0238
3 : 2p 82259 -12.712 0.3821 -0.1176 -0.0032
4 : 3s 97492 -11.622 -1.0353 0.1896 -0.0215
5 : 3p 97492 -13.256 0.4629 -0.1347 -0.0020
6 : 3d 97492 -14.931 1.8421 -0.4766 0.0223
7 : 4s 102824 -12.087 -0.9310 0.1639 -0.0197
8 : 4p 102824 -13.651 0.5184 -0.1481 -0.0011
9 : 4d 102824 -15.173 1.8650 -0.4814 0.0226
10 : 4f 102824 -15.659 2.3114 -0.6300 0.0348
11 : 5s 105292 -12.442 -0.8533 0.1442 -0.0183
12 : 5p 105292 -13.939 0.5469 -0.1560 -0.0005
13 : 5d 105292 -15.398 1.8720 -0.4835 0.0227
14 : 5f 105292 -15.724 2.3138 -0.6301 0.0348
15 : 5g 105292 -15.455 2.1117 -0.6324 0.0369

of this database. The proton collision strengths are fits to the results of Seaton
(1955) for the 2s-2p transition and Pengelly & Seaton (1964) and Brocklehurst
(1971) for all of the other transitions.

Actually, though He II/H I collisions are not important for the angular mo-
mentum redistribution in H I, the He III/H I collisions are indeed impor-
tant. Therefore, if He III has a substantial ionisation fraction, it is nec-
essary to include terms ∝ nHeIIInnL in eq. (4.12). The rate coefficient
can be calculated from eq. (4.13) using a value for the collision strength of
ΩHeIII = Z2

√
CHeΩHII(T/Z

2CHe) where ΩHII is the strength of the proton/HI
collisions (see Table 4.5), Z = 2 is the charge of the He III ion, and

CHe ≡
µ(He−p)

µ(p−p)

=
8

5
, (4.14)

where µ(He−p) is the reduced mass of the He/H system, and µ(p−p) is the reduced
mass of the H/H system.
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Table 4.2: Aij and Ωij for the N = 1 → 5 levels of H

transitiona,b Aij [s
−1] Ωij(T ) = b0 + b1T + b2T

2

2s→1sa 2 1 8.23 0.230701989 1.98505873E-06 -1.17145274E-11
2p→1sa 3 1 627000000. 0.370130298 9.41438027E-06 1.51916572E-11
3s→1sa 4 1 . . . 0.0555455253 1.09205141E-06 -7.22330208E-12
3p→1sa 5 1 167000000. 0.098599152 2.85713646E-06 -9.07527461E-12
3d→1sa 6 1 . . . 0.0471315582 1.49942413E-06 -6.83592715E-12
4s→1sa 7 1 . . . 0.0235801449 9.82577622E-07 -6.29846528E-12
4p→1sa 8 1 68200000. 0.0459912361 1.91578268E-06 -6.68320426E-12
4d→1sa 9 1 . . . 0.0247052783 4.82612921E-07 -1.93361593E-12
4f→1sa 10 1 . . . 0.0090413543 2.0730546E-08 -2.3834257E-13
5s→1sa 11 1 . . . 0.0118558411 5.12325143E-07 -3.26312452E-12
5p→1sa 12 1 34400000. 0.023435627 9.81865036E-07 -3.5210708E-12
5d→1sa 13 1 . . . 0.0127150878 2.43235821E-07 -9.73250094E-13
5f→1sa 14 1 . . . 0.00470449272 1.10018321E-08 -1.29156399E-13
5g→1sa 15 1 . . . 0.00062369044 -7.61068457E-09 3.66057556E-14
2p→2sb 3 2 . . . 378.724659 -0.000613531164 1.75879255E-09
3s→2sa 4 2 . . . 1.17686218 3.96001554E-05 -7.52731563E-11
3p→2sa 5 2 22500000. 1.81152248 9.2099616E-05 1.5241836E-10
3d→2sa 6 2 . . . 1.10043841 0.000191744768 -5.29052966E-10
4s→2sa 7 2 . . . 0.341652766 1.58109749E-05 -4.06526299E-11
4p→2sa 8 2 9670000. 0.647024189 5.23380315E-05 -1.70490774E-10
4d→2sa 9 2 . . . 0.552293565 5.52457995E-05 -2.56306745E-10
4f→2sa 10 2 . . . 0.399588795 4.43059453E-05 -2.09877084E-10
5s→2sa 11 2 . . . 0.520122966 8.2949122E-06 -3.48249174E-11
5p→2sa 12 2 4950000. 0.867017494 4.03942982E-05 -2.03482662E-10
5d→2sa 13 2 . . . 0.7094405 3.14156261E-05 -2.0075731E-10
5f→2sa 14 2 . . . 0.585537946 2.42882913E-05 -1.42870771E-10
5g→2sa 15 2 . . . 0.235978314 3.61284928E-06 -2.77494818E-11
3s→2pa 4 3 6310000. 1.94752427 1.92358023E-05 -7.79667781E-11
3p→2pa 5 3 . . . 6.51940845 0.000167401531 -6.12473933E-10
3d→2pa 6 3 64700000. 9.38290597 0.000714844201 5.37590056E-11
4s→2pa 7 3 2580000. 0.681844753 1.63355835E-05 -1.05496624E-10
4p→2pa 8 3 . . . 1.99947241 9.24779953E-05 -4.1253316E-10
4d→2pa 9 3 20600000. 2.58156827 0.000352482476 -1.28581419E-09

acoll. strengths from the copha#h hal96h.dat file, data produced by H. Anderson.
bcoll. strengths from the hlike aek89h.dat file, with apparently as yet unpublished cal-

culations by Berrington et al. (1988).
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Table 4.3: Aij and Ωij for the N = 1 → 5 levels of H, continued

transition Aij [s
−1] Ωij(T ) = b0 + b1T + b2T

2

4f→2pa 10 3 . . . 2.39511694 0.000125033557 -5.78553883E-10
5s→2pa 11 3 1290000. 0.776657809 1.74219443E-05 -1.32396161E-10
5p→2pa 12 3 . . . 2.43249038 6.02215821E-05 -3.78765622E-10
5d→2pa 13 3 9430000. 3.62224098 0.000196222456 -9.9819329E-10
5f→2pa 14 3 . . . 3.26614961 6.91791533E-05 -4.25243164E-10
5g→2pa 15 3 . . . 0.99771057 3.75655605E-06 -4.17823612E-11
3p→3sb 5 4 . . . 1450.93085 -0.00325160827 1.40768513E-08
3d→3sb 6 4 . . . 159.126917 -0.000840487719 3.48162807E-09
4s→3sa 7 4 . . . 1.08111582 0.000380437576 -1.15295628E-09
4p→3sa 8 4 3070000. 2.54886314 0.00040309013 5.56322488E-10
4d→3sa 9 4 . . . 3.14373004 0.000745642053 -2.42690635E-09
4f→3sa 10 4 . . . 3.7462125 0.000781879325 -3.57428797E-09
5s→3sa 11 4 . . . 1.54637257 0.000149080149 -6.63657887E-10
5p→3sa 12 4 1640000. 4.08813628 0.000169921842 -5.02562755E-10
5d→3sa 13 4 . . . 5.01383832 0.000247476134 -1.33289923E-09
5f→3sa 14 4 . . . 4.10691834 0.000127133679 -8.58848203E-10
5g→3sa 15 4 . . . 4.88714716 0.000244329779 -1.47617099E-09
3d→3pb 6 5 . . . 2146.0592 -0.00593632728 2.11624071E-08
4s→3pa 7 5 1840000. 3.40339559 0.000203061141 -6.75501874E-10
4p→3pa 8 5 . . . 8.60902539 0.00151186995 -4.7539148E-09
4d→3pa 9 5 7040000. 8.27640654 0.0025566506 -1.11232159E-09
4f→3pa 10 5 . . . 11.9669457 0.00323828319 -1.23422432E-08
5s→3pa 11 5 905000. 3.74173931 8.69809273E-05 -5.06385819E-10
5p→3pa 12 5 . . . 13.2467032 0.000539548421 -2.6260229E-09
5d→3pa 13 5 3390000. 15.2917815 0.00109804005 -4.70346691E-09
5f→3pa 14 5 . . . 16.2298902 0.000576218201 -3.63526886E-09
5g→3pa 15 5 . . . 18.1883828 0.000832453286 -4.85370914E-09
4s→3da 7 6 . . . 4.21900483 4.84256639E-05 -2.15917333E-10
4p→3da 8 6 348000. 13.4777083 0.000441890063 -2.29071345E-09
4d→3da 9 6 . . . 24.9062683 0.00272229022 -1.01404508E-08
4f→3da 10 6 13800000. 9.82447156 0.0119510675 -3.02823382E-08
5s→3da 11 6 . . . 3.97162814 3.51386987E-05 -3.27759745E-10
5p→3da 12 6 150000. 16.1334958 0.000110362663 -9.71870659E-10
5d→3da 13 6 . . . 28.3632617 0.000957519873 -5.33191712E-09
5f→3da 14 6 4540000. 49.7607587 0.00325075814 -1.53230468E-08
5g→3da 15 6 . . . 38.330885 0.0015114171 -7.86878077E-09
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Table 4.4: Aij and Ωij for the N = 1 → 5 levels of H, continued

transition Aij [s
−1] Ωij(T ) = b0 + b1T + b2T

2

4p→4sb 8 7 . . . 2964.29958 -0.00909288594 4.12297852E-08
4d→4sb 9 7 . . . 619.32623 -0.00430283349 2.8734997E-08
4f→4sb 10 7 . . . 124.174361 -0.00123347544 8.48440058E-09
5s→4sa 11 7 . . . 1.53806207 0.00173503526 -6.68625477E-09
5p→4sa 12 7 737000. 6.98282747 0.00152554702 -4.1843167E-09
5d→4sa 13 7 . . . 8.73782844 0.00225377148 -8.18431429E-09
5f→4sa 14 7 . . . 25.3224504 0.00222572566 -1.23041554E-08
5g→4sa 15 7 . . . 32.4265974 0.00129765509 -8.23655146E-09
4d→4pb 9 8 . . . 5549.92453 -0.0223901556 1.16294866E-07
4f→4pb 10 8 . . . 813.908792 -0.00744222541 4.90894342E-08
5s→4pa 11 8 645000. 13.3059416 0.00114087942 -6.17355099E-09
5p→4pa 12 8 . . . 22.7873231 0.00728109837 -2.4723519E-08
5d→4pa 13 8 1490000. 18.8738115 0.00699294439 -1.36005205E-08
5f→4pa 14 8 . . . 62.7008007 0.00875749509 -4.05388707E-08
5g→4pa 15 8 . . . 106.846064 0.00572769064 -3.40406121E-08
4f→4db 10 9 . . . 6073.98362 -0.0339745489 1.90841831E-07
5s→4da 11 9 . . . 15.6264397 0.000478850892 -2.67628835E-09
5p→4da 12 9 188000. 53.7360076 0.00270059254 -1.56288932E-08
5d→4da 13 9 . . . 84.0809099 0.0136172636 -5.41143791E-08
5f→4da 14 9 2580000. 19.6994986 0.0223537455 -5.43237367E-08
5g→4da 15 9 . . . 203.182691 0.0186641991 -9.35579156E-08
5s→4fa 11 10 . . . 12.3197499 2.74000635E-05 -3.51956415E-10
5p→4fa 12 10 . . . 47.7768773 0.000422602729 -3.52908665E-09
5d→4fa 13 10 50500. 105.135303 0.00307257987 -2.04380745E-08
5g→4fa 14 10 . . . 214.905676 0.018876845 -8.97469485E-08
5g→4fa 15 10 4250000. 144.086649 0.0760463582 -2.17769691E-07
5p→5sb 12 11 . . . 3924.60946 -0.00580398959 1.26210156E-08
5d→5sb 13 11 . . . 1442.42044 -0.00109774214 -3.32855828E-09
5f→5sb 14 11 . . . 447.109793 -0.00126487521 7.13987753E-09
5g→5sb 15 11 . . . 177.821648 -0.00169342267 1.00377598E-08
5d→5pb 13 12 . . . 8334.24411 -0.0118233038 2.21988618E-08
5f→5pb 14 12 . . . 2535.51791 -0.00757608021 3.9359465E-08
5g→5pb 15 12 . . . 652.74903 -0.00368088927 1.87021691E-08
5f→5db 14 13 . . . 11531.0448 -0.023057997 8.77424046E-08
5g→5db 15 13 . . . 2608.36252 -0.0157262948 8.37538465E-08
5g→5fb 15 14 . . . 12351.5748 -0.0429626285 1.81619962E-07
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Table 4.5: Ωij for the proton collision, ∆N = 0, ∆l = ±1 transitions of H.

transition Ωij(T ) = b0 + b1 log10(T )
2p→2s 3 2 -29010.0 9999.0
3p→3s 5 4 -19765.4 20134.4
3d→3s 6 4 -66225.3 45302.3
4p→4s 8 7 -41439.6 67114.5
4d→4p 9 8 -294061.2 193289.8
4f→4d 10 9 80263.0 201343.6
5p→5s 12 11 -145593.4 167786.3
5d→5p 13 12 -650479.8 528526.8
5f→5d 14 13 -18963.3 719084.1
5g→5f 15 14 -247476.4 587252.1

4.3 Collisionally excited lines

4.3.1 General formalism

The lines of most of the atoms or ions observed in the ISM (except for the lines
of H and He) are populated by collisional excitations up from the ground elec-
tronic state. This is because multi-electron atoms/ions do not have the large
energy gap between the ground state and the first excited state characteristic
of HI and HeI/II. Because of this, collisions with free electrons in a ∼ 104 K
(∼ 1 eV) gas can easily excite the first few levels in these atoms/ions. The
contribution from the recombination cascade then becomes only a small pertur-
bation on the level populations, which are mainly determined only by (upwards
and downwards) collisional transitions and by (downwards) radiative transi-
tions. The transitions among the low lying levels of multi-electron atoms/ions
are normally “magnetic dipole” or “electric quadrupole” transitions (having
non-zero A coefficients only when higher order perturbation Hamiltonians are
considered), and are usually called “forbidden lines” (and are denoted as, e.
g., [O II] lines, in between square brackets). Some of the collisionally excited
lines in multi-electron atoms/ions (particularly, the UV lines) are “permitted”
lines (i. e., “electric dipole” transitions).

For these atoms/ions, the statistical equilibrium equation (4.1) reduces to the
more simple form given in the previous chapter (see eq. 3.71), which we repeat
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here:

∑

m>l

nmAm,l + ne

∑

m 6=l

nmqm,l(T ) = nl

[

∑

m<l

Al,m + ne

∑

m 6=l

ql,m(T )

]

, (4.15)

where qm,l(T ) are the radiative excitation (m < l) or de-excitation (m > l)
coefficients. For m > l, these coefficients are given by the expression

qm,l(T ) =
8.629× 10−6

T 1/2

Ωml(T )

gm
, (4.16)

where gm is the statistical weight of the level at which the transition begins.
The collisional excitation coefficients (i. e., l → m with m > l) are given by
the relation

ql,m(T ) =
gm
gl
e−hνm,l/kT qm,l(T ) . (4.17)

In eq. (4.15), the indexes m and l refer to a numbering system in which in-
creasing values correspond to higher energy levels. The low lying levels in
multi-electron atoms or ions generally correspond to the ground state con-
figuration of the energy quantum number. Therefore, the energy quantum
number is not given, and the levels are denoted by their angular momentum
configuration in the form

2s+1Lj , (4.18)

where s is the spin, L the orbital angular momentum (denoted S, P , D, . . .
for L = 0, 1, 2, . . ., respectively) and j the total angular momentum quantum
numbers. Two things should be noted:

� the statistical weight of the level is g = 2j + 1,

� the levels with the same s and L but different j form groups of 2s + 1
levels with closely lying energies. These are called “singlet”, “doublet”
or “triplet” levels for 2s+ 1 = 1, 2 and 3, respectively.

Examples of the possible energy configurations are given in the “Grotrian dia-
grams” shown in Figures 4.1-4.5. A good source for obtaining the A coefficients
and the collision strengths Ω is the material in the book of Pradhan & Nahar
[21].
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Figure 4.1: Energy level diagram showing the optical and IR forbidden transi-
tions of S II. The wavelengths of the transitions are given in Å. For historical
reasons, the 2D −4 S transitions are called the “nebular”, the 2P −4 S the
“auroral” and the 2P −2 D the “transauroral” lines.

In using the parameters from such tabulations, one has to sometimes divide
collision strengths given for a term with several levels into collision strengths
for the individual levels. For example, if a collision strength ω(SLJ, S ′L′) is
tabulated (for a transition originating in level SLJ and ending in a multiplet
S ′L′), the collision strengths for the transitions between levels SLJ and the
individual levels S ′L′J ′ of the S ′L′ multiplet are given by :

Ω(SLJ, S ′L′J ′) =
2J ′ + 1

(2S ′ + 1)(2L′ + 1)
Ω(SLJ, S ′L′) , (4.19)

where 2J ′+1 is the statistical weight of the S ′L′J ′ level and (2S ′+1)(2L′+1)
is the statistical weight of the S ′L′ term.
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Figure 4.2: Energy level diagram showing the UV, optical and IR forbidden
transitions of O I. The wavelengths of the transitions are given in Å.
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Figure 4.3: Energy level diagram showing the UV, optical and IR forbidden
transitions of O II. The wavelengths of the transitions are given in Å.
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Figure 4.4: Energy level diagram showing the UV, optical and IR forbidden
transitions of O III. The wavelengths of the transitions are given in Å.
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Figure 4.5: Energy level diagram showing the UV permitted/forbidden tran-
sitions of O IV. The wavelengths of the transitions are given in Å.
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4.3.2 The 3-level atom

For an atom/ion with three levels, the equilibrium equations are :

n3 [A31 + A32 + ne(q31 + q32)] = ne(n1q13 + n2q23) , (4.20)

n2 [A21 + ne(q21 + q23)] = n3A32 + ne(n1q12 + n2q32) , (4.21)

nen1(q12 + q13) = n3A31 + n2A21 + ne(n2q21 + n3q31) . (4.22)

Actually, only two out of these three equations are linearly independent, so that
one has to choose two of them, and solve them together with the conservation
equation :

n1 + n2 + n3 = n , (4.23)

where n is the total number density of the atom/ion that is being considered.
The resulting system of 3 equations (with n1, n2 and n3 as unknowns, and ne,
n and T as given parameters) can be solved.

Let us consider the case in which A32 = 0 and also q23 = q32 = 0. Equations
(4.20-4.21) then take the form :

n3(A31 + neq31) = nen1q13 , (4.24)

n2(A21 + neq21) = nen1q12 . (4.25)

Dividing these two equations, we have

n3

n2

=

[

A21g2T
1/2/(neCΩ12) + 1

A31g3T 1/2/(neCΩ13) + 1

]

g3
g2
e−E23/kT , (4.26)

where we have also used eq. (4.16) and the fact that E13 = E12 +E23. In this
equation, C = 8.629× 10−6 (in c.g.s.).

We now consider the emission from an optically thin, homogeneous slab. The
ratio of the intensities of the lines corresponding to the transitions 3 → 1 and
2 → 1 is then given by :

I3
I2

=
n3A31E31

n2A21E21

=

[

A21g2T
1/2/(neCΩ12) + 1

A31g3T 1/2/(neCΩ13) + 1

]

g3
g2
e−E23/kT

A31E31

A21E21

, (4.27)

where for the second equality we have used eq. (4.26).

71



In the low electron density regime, this ratio takes the form :

I3
I2

=
Ω13

Ω12

e−E23/kT
E31

E21

, (4.28)

In the high electron regime, the line ratio takes the form :

I3
I2

=
g3
g2
e−E23/kT

A31E31

A21E21

. (4.29)

coinciding with the line ratio predicted from levels populated with a thermo-
dynamic equilibrium Boltzmann distribution.

Therefore, both in the high and in the low density regime the line ratio is only
a function of the temperature T of the gas. From a line ratio in one of these
regimes, we can take an observed value for I3/I2 and use eqs. (4.28) or (4.29)
to obtain a direct determination of the temperature of the emitting region. If
the line ratio is not in the high or low density regime, the observed line ratio
can be used to derive a relation between ne and T (from eq. 4.27) that has to
be obeyed by the electron density and temperature of the emitting region.

An interesting case is provided by ions (such as S II, see Fig. 4.1) which have
two close-spaced levels 2 and 3 (i. e., with E23 ≪ kT ). For such levels, eq.
(4.27) simplifies to

I3
I2

≈
[

A21g2T
1/2/(neCΩ12) + 1

A31g3T 1/2/(neCΩ13) + 1

]

Ω13

Ω12

A31E31

A21E21

. (4.30)

Therefore, the line ratio only has the T 1/2 temperature dependence explicitly
shown in eq. (4.30) and the slow dependence on T of the collision strengths.
Because of this slow dependence on T , one can use “density indicators” (i. e.,
line ratios with E23 ≪ kT ) to directly obtain the electron density of the
emitting gas as a function of the observed line ratio. This can be done by,
e. g., setting T ≈ 104 K in eq. (4.30) and inverting it to find ne as a function
of I3/I2.

4.3.3 Diagnostic diagrams

In general, one can determine the fraction of atoms (or ions) in each of the
excited levels by inverting the statistical equilibrium conditions given by eq.
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Table 4.6: Aij and Ωij for the 5-level O I ion.

Transition λ [Å] Ai,j [s
−1] Ω = b0 + b1t ; t = log10(T/10

4K)
3P1 −3 P2 2 1 6.32E5 8.92E-5 -0.00675 0.1067
3P0 −3 P2 3 1 4.41E5 1.0E-10 0.0026 0.0257
3P0 −3 P2 3 2 1.46E6 1.74E-5 -0.0102 0.0393
1D2 −3 P2 4 1 6300.3 0.0634 0.00365 0.1383
1D2 −3 P1 4 2 6363.8 0.0211 0.00215 0.0820
1D2 −3 P0 4 3 6393.5 7.23E-6 0.00075 0.0277
1S0 −3 P2 5 1 2959.2 2.88E-4 0.00065 0.0166
1S0 −3 P1 5 2 2972.3 0.0732 0.00035 0.0100
1S0 −3 P2 5 3 2979.2 0.0 0.00015 0.0033
1S0 −1 D2 5 4 5577.4 1.22 0.0517 0.0489

(4.15). These populations can be used to calculate the line ratios that would
be produced by a homogeneous, optically thin slab :

Ikl
Imn

=
nkAklEkl

nmAmnEkm

. (4.31)

Line ratios involving sums of lines (in the numerator and/or the denominator)
are sometimes also used.

As the nk/nm ratio only depends on ne and T , each of the observed line ratios
determines an allowed locus in the (ne, T ) plane. Therefore, if one observes
several line ratios (of transitions that do not start in the same excited level),
each of them should give an allowed locus in the (ne, T ) plane, all of which
intersect at the ne and T values of the gas that is emitting the observed lines.

In practice, the allowed loci for three or more line ratios do not intersect exactly
at the same point. This can be due to the errors in the observed line ratios
and/or to the fact that the emitting region is not homogeneous.

Tables 4.7 and 4.10 give the A coefficients and polynomial fits to the collision
strengths Ω from the tabulation found in the book of Pradhan & Nahar [21].

4.3.4 Example: plasma diagnostics with the [S II] lines

With the coefficients given in Table 4.10 one can solve a 5-level atom problem
(for the levels shown in fig. 4.1), and obtain predictions for all of the ratios
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Table 4.7: Aij and Ωij for the 5-level O II ion.

Transition λ [Å] Ai,j [s
−1] Ω = b0 + b1t+ b2t

2 ; t = log10(T/10
4K)

2D0
5/2 −4 S0

3/2 2 1 3728.8 3.50E-5 0.7890 0.0106 0.0020
2D0

3/2 −4 S0
3/2 3 1 3726.0 1.79E-4 0.5245 0.0104 0.0000

2D0
3/2 −4 D0

5/2 3 2 4.97E6 1.30E-7 1.2750 -0.122 0.020
2P 0

3/2 −4 S0
3/2 4 1 2470.3 0.0057 0.2600 0.010 0.000

2P 0
3/2 −4 D0

5/2 4 2 7319.9 0.107 0.7080 0.0194 0.002
2P 0

3/2 −4 D0
3/2 4 3 7330.7 0.0578 0.3953 0.0113 0.001

2P 0
1/2 −4 S0

3/2 5 1 2470.2 0.0234 0.1318 0.0021 0.001
2P 0

1/2 −4 D0
5/2 5 2 7321.8 0.0615 0.2850 0.010 0.000

2P 0
1/2 −4 D0

3/2 5 3 7329.6 0.102 0.2630 0.0146 -0.002
2P 0

3/2 −4 P 0
1/2 5 4 5.00E7 2.08E-11 0.2735 0.0132 0.000

Table 4.8: Aij and Ωij for the 6-level O III ion.

Transition λ [Å] Ai,j [s
−1] Ω = b0 + b1t+ b2t

2 ; t = log10(T/10
4K)

3P1 −3 P0 2 1 883562. 2.62E-05 0.5462 0.0666 -0.0266
3P2 −3 P0 3 1 326611. 3.02E-11 0.2718 0.0527 0.0209
3P2 −3 P1 3 2 518145. 9.76E-05 1.2959 0.2080 -0.0481
1D2 −3 P0 4 1 4932.6 2.74E-06 0.2555 0.0737 0.0371
1D2 −3 P1 4 2 4958.9 0.00674 0.7677 0.2229 0.0941
1D2 −3 P2 4 3 5006.7 0.0196 1.2795 0.3715 0.1543
1S0 −3 P0 5 1 2314.9 . . . 0.0328 0.0109 0.0074
1S0 −3 P1 5 2 2321.0 0.223 0.0983 0.0325 0.0225
1S0 −3 P2 5 3 2332.1 7.85E-4 0.1639 0.0545 0.0368
1S0 −1 D2 5 4 4363.2 1.78 0.5837 0.1952 -0.3451
5S0

2 −3 P0 6 1 1657.7 . . . 0.1342 0.0351 -0.0509
5S0

2 −3 P1 6 2 1660.8 212. 0.4032 0.1050 -0.1617
5S0

2 −3 P2 6 3 1666.1 522. 0.6718 0.1758 -0.2744
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Table 4.9: Aij and Ωij for the 5-level O IV ion.

Transition λ [Å] Ai,j [s
−1] Ω = b0 + b1t+ b2t

2 ; t = log10(T/10
4K)

2P 0
3/2 −2 P 0

1/2 2 1 2.587E5 5.18E-4 2.4020 0.9164 -1.1751
4P1/2 −2 P 0

1/2 3 1 1426.46 1.81E3 0.1332 0.0452 0.0146
4P1/2 −2 P 0

3/2 3 2 1434.07 1.77E3 0.1024 0.0625 0.0339
4P3/2 −2 P 0

1/2 4 1 1423.84 2.28E1 0.2002 0.0801 0.0422
4P3/2 −2 P 0

3/2 4 2 1431.42 3.28E2 0.2692 0.1379 0.0898
4P3/2 −4 P1/2 4 3 1.680E6 . . . 1.0906 0.2002 0.1056
4P5/2 −2 P 0

1/2 5 1 1420.19 . . . 0.1365 0.0904 0.0625
4P5/2 −2 P 0

3/2 5 2 1427.78 1.04E3 0.5683 0.2345 0.1108
4P5/2 −4 P1/2 5 3 3.260E5 . . . 0.6876 0.0359 0.4118
4P5/2 −4 P3/2 5 4 5.620E5 1.02E-4 2.0497 0.2653 0.7749

Table 4.10: Aij and Ωij for the 5-level S II ion.

transition λ [Å] Ai,j [s
−1] Ω = b0 + b1t+ b2t

2 ; t = log10(T/10
4K)

2D0
3/2 −4 S0

3/2 2 1 6730.8 0.000882 3.112 -0.712 -0.622
2D0

5/2 −4 S0
3/2 3 1 6716.5 0.00026 4.658 -1.066 -0.865

2D0
5/2 −4 D0

3/2 3 2 3145000. 3.35E-07 7.124 0.750 11.734
2P 0

1/2 −4 S0
3/2 4 1 4076.4 0.0906 0.905 0.342 0.304

2P 0
1/2 −4 D0

3/2 4 2 10336.3 0.163 1.787 -0.741 2.045
2P 0

1/2 −4 D0
5/2 4 3 10373.3 0.0779 2.017 -0.791 2.320

2P 0
3/2 −4 S0

3/2 5 1 4068.6 0.225 2.015 0.583 -1.759
2P 0

3/2 −4 D0
3/2 5 2 10286.7 0.133 2.778 -1.107 3.224

2P 0
3/2 −4 D0

5/2 5 3 10320.4 0.179 4.834 -1.981 5.379
2P 0

3/2 −4 P 0
1/2 5 4 2140000. 1.03E-06 2.411 0.142 -3.585
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between the [S II] emission lines.

Fig. 4.6 gives a few selected line ratios as a function of electron density, for
three chosen temperatures (T = 5000, 10000 and 15000 K). It is clear that the
line ratios between lines arising from close-lying upper levels (i.e., the 6730/16
and the 4076/68 ratios, see Fig. 4.1) are good “electron density indicators”
(i.e., they have a large ne dependence and shallow T dependence). The (6030+
16) / (4076 + 68) line ratio (calculated with lines from well separated upper
levels, see Fig. 4.1) show strong ne and T dependence (see Fig. 4.6).

Now, let us assume that observationally we determine the ratios : I(6730) /
I(6716) = 1.63 ± 0.03, I(4076) / I(4068) = 0.305 ± 0.015 and I(6730 + 16)
/ I(4076 + 68) = 3.4 ± 0.1. For each of these line ratios, the solution to the
5-level atom can be used to constrain a region in the (ne, T )-plane.

The result of this exercise is shown in Fig. 4.7. Actually, for each observed line
ratio we show two curves : one for the upper boundary and one for the lower
boundary of the line ratio range permitted by the observational errors. An
analysis of Fig. 4.7 shows that a point with ne = 3720 cm−3 and T = 16000 K
is consistent with all of the observed line ratios.

It is also clear that the 4076/4068 line ratio does not provide a lot of informa-
tion. This is a direct result of the fact that the observed 4076/4068 ratio lies
in the “low density regime” (see Fig. 4.6).

4.4 Continuum emission

4.4.1 General considerations

The continuum of photoionised regions has three main contributions: the re-
combination, free-free and two-photon continua of H. In regions in which He
is in the form of He II, the He III/II recombination continuum can also have
an important contribution.
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Figure 4.6: Selected [S II] line ratios given as a function of the electron density.
Curves calculated for three temperatures are shown : T = 5000 K (solid lines),
T = 10000 K (dotted lines) and T = 15000 K (dashed lines).
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Figure 4.7: [S II] diagnostic diagram showing the regions allowed by an
I(6730)/I(6716) = 1.63 ± 0.03 line ratio (solid lines), an I(4076)/I(4068) =
0.305±0.015 ratio (dotted lines) and an I(6730+16)/I(4076+68) = 3.4±0.1 ra-
tio (dashed lines). These ratios determine an electron density ne = 3720 cm−3

and a temperature T = 16000 K (this point is shown with a cross).
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4.4.2 The recombination continua

Recombinations of free electrons to an excited level N of a hydrogenic ion of
charge Z (with energy χN = Z2χH/N

2, where χH is the ionisation potential
from the ground state of H) produce photons with energies

hν =
1

2
mev

2 + χN , (4.32)

where me is the mass and v the velocity of the free electron.

The recombination continuum can then be calculated as a sum of the continua
due to recombinations to all excited levels, which are given by

j(N)
ν =

nionne

4π
vσN(ν)f(v, T )hν

dv

dν
, (4.33)

where σN(ν) is the cross section for recombination to level N and

f(v, T ) =
4√
π

( me

2kT

)3/2

v2e−mev2/(2kT ) , (4.34)

is the Maxwell-Boltzmann distribution of the electrons, and dv/dν = h/(mev)
[obtained from the relation d(mev

2/2) = d(hν), see eq. 4.32].

From the principle of detailed balancing, it is possible to derive a Milne relation
of the form:

σN(v) =
wHI

wHII

h2ν2

m2
ec

2v2
aN(ν) , (4.35)

where aN(ν) is the photoionisation cross section from level N and wHI ≈ 2 and
wHII = 1 are the HI and HII partition functions, respectively. This relation is
derived in Appendix 1 of the book of Osterbrock [19].

Combining eqs. (4.32-4.35), we obtain:

j(N)
ν =

nHIIne

4π
γN(ν) , (4.36)

with

γN(ν) =

(

2

π

)1/2
2N2h4ν3

c2(mekT )3/2
aN(ν) e

(χN−hν)/kT . (4.37)

Given the photoionisation cross section aN(ν), eqs. (4.36-4.37) then give us
the continua to all levels N of a hydrogenic ion.
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For a hydrogenic ion of charge Z, the photoionisation cross section aN(ν) is
given by

aN(Z, ǫ) = 7.907× 10−18cm2 N

Z2

(

1 +N2ǫ
)−3

gbf (N, ǫ) , (4.38)

for ǫ ≥ 0 and aN(Z, ǫ) = 0 for ǫ < 0. The photon energy is

hν = Z2χH

(

1

N2
+ ǫ

)

, (4.39)

with χH = 13.6 eV, and the gII Gaunt’s factor is approximately given by

gbf (N, ǫ) = 1+0.1728N−2/3(u+1)−2/3(u−1)−0.0496N−4/3(u+1)−4/3(u2+4u/3+1) ,
(4.40)

with u = N2ǫ (see Seaton [30]). The precision of this expansion for the Gaunt
factor has been evaluated by Brown & Mathews [7].

Finally, the total bound-free emission of the hydrogenic ion can be written as :

jν =
nZne

4π
γ(ν) , (4.41)

with
γ(ν) =

∑

N≥1

γN(ν) . (4.42)

The γ(ν) coefficient obtained for H (i. e., setting Z = 1) is plotted in Fig. 4.8
for three chosen values of the temperature T . It is clear that the slopes of
the continua as well as the “jumps” at the frequencies corresponding to the
ionisation energies of the levels of H depend quite strongly on the temperature.
Therefore, observed values for these parameters can be used as a temperature
diagnostic of the emitting plasma.

The formalism used above can of course be used to derive the HeII recombi-
nation continuum (by setting Z = 2 in all of the expressions). The intensity
of this continuum can be comparable to the H recombination continuum in
regions where He is twice ionised. The recombination continuum of HeI has
γ values (see eq. 4.41, setting nZ = nHeII) which are similar to the ones of
HI (see Brown & Mathews [7]). The HeI recombination emission coefficient
is therefore of order 10% of the HI emission coefficient (for an He/H∼ 0.1
abundance).
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Figure 4.8: Recombination continuum of H. Curves calculated for three tem-
peratures are shown : T = 5000 K (solid line), T = 10000 K (dotted line) and
T = 20000 K (dashed line).
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4.4.3 The free-free continua

The free-free continuum emission coefficient due to electron transitions in the
electric field of an ion of charge Z is given by:

jν =
nenZ

4π

32Z2e4h

3m2
ec

3

(πχZ−1

3kT

)1/2

e−hν/kT gff (T, Z, ν) , (4.43)

where χZ−1 is the ionisation potential of the ion with charge Z − 1. For a
hydrogenic ion χZ−1 = Z2χH , and the Gaunt factor gff is given by :

gff (T, Z, ν) = 1 + 0.1728

(

hν

Z2χH

)1/3

(1 + 2µ)−

0.0496

(

hν

Z2χH

)2/3
(

1 + 2µ/3 + 4µ2/3
)

(4.44)

with µ = kT/hν (see Seaton [30]). This expression leads to gff ≈ 1 for the
optical region of the spectrum.

The free-free continuum dominates the radio spectrum. For radio frequencies,
an appropriate expression for the Gaunt factor is:

gff (T, Z, ν) =

√
3

π

[

ln

(

8k3T 3

π2Z2e4meν2

)1/2

− 1.4425

]

. (4.45)

With eqs. (4.43-4.45) we can compute the free-free continua of HII and HeIII
(setting nZ = nHII , Z = 1 and nZ = nHeIII , Z = 2, respectively). It is usual
practice to include the HeII free-free continuum as well as the HeI recombina-
tion continuum in an approximate way by assuming that they have the same
temperature and frequency dependence as the corresponding H emission coef-
ficients. As the HeI recombination and HeII free-free continua are down by an
order of magnitude with respect to the H continua, this assumption does not
introduce a large error in the computed continuum spectrum.

4.4.4 The two-photon continuum

Electrons in the 2s state of H decay to the 1s level through a 2-photon transition
with Einstein coefficient A2s,1s = 8.23 s−1 (see Table 4.2).
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The emission coefficient is given by :

j(2q)ν =
n2sA2s,1s

4π
g(ν) , (4.46)

where g(ν) is given in Table 4.11 (the values are taken from Brown & Mathews
[7]). An analytic fit to these values is :

ga(y) = 9.23 exp
{

− [η/0.3](1.3+1.6η)
}

− 0.61 , (4.47)

in units of 10−27 erg Hz−1, with η = 0.5 − y and y = ν/ν21 (ν21 = 3χH/4h
being the frequency of the 2 → 1 transition of H). The analytic fit in eq. (4.47)
is valid for y ≤ 0.5. For y > 0.5, the relation

g(1− y) =
(1− y) g(y)

y
, (4.48)

should be used in order to compute the g(y) function from the analytic fit (eq.
4.47). This equation represents the fact that the photon distribution (i. e., of
the number of emitted photons) is symmetric with respect to ν21/2. The errors
of the analytic fit obtained from eqs. (4.47-4.48) can be appreciated in Fig.
4.9. We should note that the function ga(y) (eq. 4.47) becomes negative for
0 ≤ y < 0.015 and should therefore be set to zero. Because of this feature, the
cutoff at high energies of the 2-photon continuum computed with eq. (4.47) is
shifted by 1.5 % with respect to ν21.

The simplest possible way of calculating the population of n2s of the 2s level
is to assume a balance of the form :

n2s

(

A2s,1s + neq
(e)
1s,2s + nHIIq

(p)
1s,2s

)

= nenHIIα2s(T ) , (4.49)

where the collisional rates q(e) and q(p) can be calculated with the corresponding
collision strengths given in Tables 4.2 and 4.5. The effective recombination
coefficient to the 2s level α2s(T ) has been tabulated by Brown & Mathews [7],
and can be obtained from the interpolation formula:

log10 [α2s(T )] = −13.077− 0.696t− 0.0987t2 ; t = log10(T/10
4K) , (4.50)

in erg cm3 s−1. Eq. (4.49) represents the balance between the recombination
cascade electrons that end in level 2s (right hand term) and the electrons that
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Table 4.11: Frequency dependence of the H 2-photon emission.

y = ν/ν21 g(y) y = ν/ν21 g(y)
[10−27erg Hz−1] [10−27erg Hz−1]

0.00 0.0 0.55 9.46
0.05 0.303 0.60 10.17
0.10 0.978 0.65 10.77
0.15 1.836 0.70 11.12
0.20 2.78 0.75 11.34
0.25 3.78 0.80 11.12
0.30 4.80 0.85 10.40
0.35 5.80 0.90 8.80
0.40 6.78 0.95 5.76
0.45 7.74 1.00 0.0
0.50 8.62

Figure 4.9: Frequency dependence of the 2-photon continuum of H : g(y) (in
10−27erg Hz−1) as a function of y = ν/ν21. The crosses are the values of Brown
& Mathews [7] and the solid line the analytic fit described in the text.
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leave 2s through 2-photon transitions to 1s or through collisional transitions
to the 2p level. At high enough optical depths of the Lyα line, the popu-
lation of level 2p can be high enough for 2p → 1s collisional transitions to
become important. This effect is discussed by Brown & Mathews [7]. Another
possibly important effect is found in a partially neutral gas of temperatures
T ≥ 12000 K, in which 1s→ 2s collisional transitions can be important. This
effect can lead to a hugely increased intensity of the 2-photon continuum.

Combining eqs. (4.46) and (4.49) we then obtain :

j(2q)ν =
nenHIIα2s(T )g(ν)

4π
[

1 +
(

neq
(e)
1s,2s + nHIIq

(p)
1s,2s

)

/A2s,1s

] . (4.51)

A more detailed model for the intensity of the 2-photon continuum would
involve a solution of the recombination cascade with collisions in order to
obtain a better estimate of n2s.
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Part III

Dynamics of the ISM
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Chapter 5

The equations of gasdynamics

5.1 General considerations

It is in principle possible to derive the gasdynamic equations as velocity mo-
ments of Vlasov’s equation (for a single particle distribution function). In
its turn, Vlasov’s equation can be derived from Liouville’s theorem (i. e., the
fundamental equation of statistical mechanics) through methods such as the
“BBGKY” hierarchy. These derivations can be found in most standard plasma
physics or particle kinetics books. In this chapter, we will describe the math-
ematically simple and physically more inspiring “macroscopic derivation” of
the gasdynamic equations (described in different forms in most books on gas-
dynamics or hydrodynamics).

In order to be able to describe a gas (a system of many interacting particles)
as a fluid, the following conditions must be satisfied :

� the mean free path λ of the particles must be much smaller than the char-
acteristic distance L of the spatial variations of the macroscopic variables
of the gas (such as the density),

� the mean time between collisions tcoll must be much smaller than the
characteristic timescale tflow of changes in the flow,

� the mean distance l ∼ n−1/3 (where n is the number density) between
neighbouring particles must also be much smaller than L.
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The λ ≪ L condition implies that the gas particles effectively see an infinite,
homogeneous environment, and therefore (provided that the tcoll ≪ tflow con-
dition is also satisfied) attain a local thermodynamic equilibrium. This means
that in a reference system moving with the flow the particles have a TE,
Maxwell-Boltzmann velocity distribution (with a well defined local tempera-
ture T ). Therefore, the thermal energy and the pressure/density/temperature
law are given by the relations obtained for a (real or ideal) gas in TE.

The n−1/3 ≪ L condition implies that one can have small volumes in which
the flow variables are approximately constant, but which still have very large
numbers of particles within them, so that a fluid description is still meaning-
ful within these volumes. As we will see in the following sections, this is a
fundamental assumption necessary for deriving the gasdynamic equations.

5.2 Macroscopic derivation

Let us consider a control volume element V , surrounded by a surface S, which
has a fixed position and shape as a function of time. Such a fixed volume
element (surrounded by an immaterial surface) is called an “Eulerian” control
volume. The gas freely flows through this control volume (see Fig. 5.1).

5.3 Fluxes

Let us consider a fixed surface element ∆S, through which the gas flows at a
velocity u. From the diagram shown in Figure 5.2, it is clear that all of the
material within the volume

∆V = un ∆t∆S (5.1)

(where un is the flow velocity normal to the surface element) goes through ∆S
in a time ∆t.

Therefore, if we have any volumetric quantity A of the flow (for example, we
could have A = ρ, the mass density of the gas), the flux of this quantity
through a unit surface is :

FA =
A∆V

∆t∆S
= Aun . (5.2)
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V

S

ρ, P, u

n
Figure 5.1: An imaginary, fixed (“Eulerian”) control volume through which
flows a continuous medium of density ρ, pressure P and flow velocity u. The
volume V is surrounded by the surface S. The surface has an outward pointing
normal unit vector n̂.
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u ∆

un∆

t

t

nu

Figure 5.2: The gas (with velocity u) flows through a fixed surface element (in
blue) ∆S, with normal vector n̂.
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For example, for the A = ρ case, FA corresponds to the mass per unit area
and time going through a surface oriented such that un is the normal velocity.

One can then define a vector flux

FA = Au , (5.3)

and the mass going through a surface with normal unit vector n̂ (per unit area
and time) is then given by

FA = FA · n̂ . (5.4)

5.4 The continuity equation

Let us now consider the mass

M =
y

V

ρ d3x (5.5)

within the control volume V shown in Figure 5.1, where ρ is the mass density
of the gas. In the absence of mass sources or sinks, M will change only as the
result of the net mass going in/out through the surface S :

∂M

∂t
= −

{

S

ρu · n̂ dS , (5.6)

where ρu is the mass flux (see §3.3), the “−” sign accounts for the fact that
n̂ points outwards. Combining equations (5.5-5.6), using Gauss’s theorem for
converting the surface integral into a volume integral and commuting the time
derivative with the volume integral, we then obtain :

y

V

[

∂ρ

∂t
+∇ · (ρu)

]

d3x = 0 . (5.7)

The final step is obtained by noting that for a volume V ≪ L3 (where L is the
characteristic length of variations along the flow), the integral in eq. (5.7) will
have a value = [ ]V , where the integrand “[ ]” is evaluated in any point within
the volume V . We should note that for a fluid approximation to be valid, a
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volume satisfying the V ≪ L3 condition can still have a very large number of
particles within it (see §3.1). Therefore, eq. (5.7) implies that

∂ρ

∂t
+∇ · (ρu) = 0 , (5.8)

for all times and positions. This differential equation is called the “continuity
equation” of gasdynamics.

5.5 The momentum equation

Let us now consider the momentum along the i-th direction

Πi =
y

V

ρui d
3x (5.9)

within the control volume V shown in Figure 5.1, where ui (i = 1, 2, 3) is the
i-th component of the flow velocity.

The momentum conservation equation can then be written as :

∂Πi

∂t
= −

{

S

ρuiu · n̂ dS −
{

S

P êi · n̂ dS ,+
y

V

fi d
3x (5.10)

where the first term on the right represents the net amount of i-th momentum
going in or out through the surface of the volume element (see Fig. 5.1), the
second term is the i-th component of the force of the gas pressure on the
volume element, and the third term represents the force on the volume due
to an external force (per unit volume) fi acting on the flow along the i-th
direction (this could be, e. g., the force due to gravity). The êi are the unit
vectors along the coordinate axes.

Following the method of §3.4, from eq. (5.10) we derive :

∂ρui
∂t

+∇ · (ρuiu) +
∂P

∂xi
= fi . (5.11)

For the case of a gravitational force, we would have fi = ρgi (with gi the i-th
component of the gravitational acceleration).
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5.6 The energy equation

We now consider the equation for the kinetic+thermal energy per unit volume

E =
1

2
ρu2 +

P

γ − 1
, (5.12)

where u is the modulus of the flow velocity and γ = Cp/Cv is the specific heat
ratio (= 5/3 for a monoatomic gas, and = 7/5 for diatomic molecules with
thermalized rotation states).

For deriving the equation we consider the energy flux Eu, the work Pu of the
pressure force on the surface of the control volume, the work f · u of possible
external forces f (per unit volume), and the net energy gain/loss per unit
volume G−L due to emission/absorption of radiation. Following the method
of §3.4, one obtains the energy equation :

∂E

∂t
+∇ · [u (E + P )] = G− L+ f · u . (5.13)

The “gasdynamic” or “Euler” equations (eqs. 5.8, 5.11 and 5.13) are a closed
set of differential equations from which one can in principle derive ρ, u and P
as a function of position and time, for any given set of initial and boundary
conditions. In the following sections, we present the Euler equations in different
notations and for different coordinate systems.

5.7 Different forms of the Euler equations

5.7.1 Using Einstein’s notation

Continuity equation :

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 , (5.14)

Momentum equation :

∂ρuj
∂t

+
∂

∂xi
(ρuiuj + Pδij) = fj , (5.15)
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Energy equation :

∂E

∂t
+

∂

∂xi
[ui (E + P )] = G− L+ fiui , (5.16)

where E = ρuiui/2 + P/(γ − 1).

In these equations, i, j =1, 2, 3 represent the three coordinates of a Cartesian
reference system. If one of these indexes appears twice in one term, a sum
from 1 to 3 is implied. For example,

uiui =
3
∑

i=1

uiui , (5.17)

∂

∂xi
(ρuiuj) =

3
∑

i=1

∂

∂xi
(ρuiuj) . (5.18)

5.7.2 In vector/tensor notation

Continuity equation :

∂ρ

∂t
+∇ · (ρu) = 0 , (5.19)

Momentum equation :

∂ρu

∂t
+∇ ·

(

ρuu+ PI
)

= f , (5.20)

Energy equation :

∂E

∂t
+∇ · [u (E + P )] = G− L+ f · u . (5.21)

In the momentum equation, I = δij is the unit second rank tensor. A Cartesian
coordinate system is assumed.
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5.7.3 Cartesian equations, all terms written explicitly

Following the normal notation used in gasdynamics, we name (u, v, w) the
three components of the flow velocity u, along the axes of an (x, y, z), Cartesian
reference system.

Continuity equation :

∂ρ

∂t
+

∂

∂x
ρu+

∂

∂y
ρv +

∂

∂z
ρw = 0 , (5.22)

Momentum equation(s) :

∂

∂t
ρu+

∂

∂x
ρu2 +

∂

∂y
ρuv +

∂

∂z
ρuw +

∂P

∂x
= fx , (5.23)

∂

∂t
ρv +

∂

∂x
ρuv +

∂

∂y
ρv2 +

∂

∂z
ρvw +

∂P

∂y
= fy , (5.24)

∂

∂t
ρw +

∂

∂x
ρuw +

∂

∂y
ρvw +

∂

∂z
ρw2 +

∂P

∂z
= fz , (5.25)

Energy equation :

∂E

∂t
+

∂

∂x
u(E + P ) +

∂

∂y
v(E + P ) +

∂

∂z
w(E + P )

= G− L+ ufx + vfy + wfz , (5.26)

where E = ρ(u2 + v2 + w2)/2 + P/(γ − 1).

5.7.4 2D Cartesian equations, all terms written explic-

itly

We name (u, v) the two components of the flow velocity u, along the axes of
an (x, y), Cartesian reference system.

Continuity equation :
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∂ρ

∂t
+

∂

∂x
ρu+

∂

∂y
ρv = 0 , (5.27)

Momentum equation(s) :

∂

∂t
ρu+

∂

∂x
ρu2 +

∂

∂y
ρuv +

∂P

∂x
= fx , (5.28)

∂

∂t
ρv +

∂

∂x
ρuv +

∂

∂y
ρv2 +

∂P

∂y
= fy , (5.29)

Energy equation :

∂E

∂t
+

∂

∂x
u(E + P ) +

∂

∂y
v(E + P ) = G− L+ ufx + vfy , (5.30)

where E = ρ(u2 + v2)/2 + P/(γ − 1).

5.7.5 2D cylindrical equations, all terms written explic-
itly

We name (u, v) the two components of the flow velocity u, along the axes of
an (z, r), cylindrical reference system.

Continuity equation :

∂ρ

∂t
+

∂

∂z
ρu+

∂

∂r
ρv +

ρv

r
= 0 , (5.31)

Momentum equation(s) :

∂

∂t
ρu+

∂

∂z
ρu2 +

∂

∂r
ρuv +

∂P

∂z
+
ρuv

r
= fz , (5.32)

∂

∂t
ρv +

∂

∂z
ρuv +

∂

∂r
ρv2 +

∂P

∂r
+
ρv2

r
= fr , (5.33)

Energy equation :
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∂E

∂t
+

∂

∂x
u(E + P ) +

∂

∂r
v(E + P ) +

v(E + P )

r
= G− L+ ufz + vfr , (5.34)

where E = ρ(u2 + v2)/2 + P/(γ − 1).

5.7.6 1D equations

Continuity equation :

∂ρ

∂t
+

∂

∂x
ρu+

ηρu

x
= 0 , (5.35)

Momentum equation :

∂

∂t
ρu+

∂

∂x
(ρu2 + P ) +

ηρu2

x
= f , (5.36)

Energy equation :

∂E

∂t
+

∂

∂x
u(E + P ) +

ηu(E + P )

x
= G− L+ uf , (5.37)

where E = ρu2/2 + P/(γ − 1). For η = 0, 1 and 2, we have the 1D Cartesian,
cylindrical (with x = r, the cylindrical radius) and spherical (with x = R, the
spherical radius) Euler equations, respectively.

5.8 Gasdynamic equations in Lagrangean form

5.8.1 General form

The “Lagrangean” description of a flow is based on considering a “Lagrangean”
fluid parcel, which moves and changes shape following the motion and distor-
tion of the fluid. The free variables in such a description are the initial coor-
dinates x0 of all fluid parcels, and the time t. The position of the parcels x
is obtained as a function of x0 and t through the solution to the gasdynamic
equations.
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Using the chain rule, it is evident that

d

dt
[ ] =

∂

∂t
[ ] + u · ∇[ ] , (5.38)

where the total time-derivative is the Lagrangean derivative (i. e., following a
fluid parcel) and the partial time-derivative is the Eulerian one (i. e., at a fixed
spatial position).

One can then take the Euler equations (in the form given by eqs. 5.19-5.21) and
combine them with eq. (5.38) to obtain the Lagrangean gasdynamic equations :

Continuity equation :

dρ

dt
+ ρ∇ · u = 0 , (5.39)

Momentum equation (in the form of Newton’s second law) :

ρ
du

dt
+∇P = f , (5.40)

Energy equation :

dǫ

dt
+ P

d

dt

(

1

ρ

)

=
G− L

ρ
, (5.41)

where ǫ = P/(γ − 1)ρ is the thermal energy per unit mass of the gas.

It is also possible to combine the terms of Eq. (5.41) to derive the “entropy
equation” :

d

dt

(

Pρ−γ
)

=
(γ − 1)

ργ
(G− L) , (5.42)

with S = ln (Pρ−γ) being the specific entropy of the gas.

5.8.2 1D equations

In the 1D case, it is possible to use a mass coordinate:

m =

∫

ρrpdr , (5.43)
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(where p = 0 for the plane-parallel, p = 1 for the cylindrical and p = 2 for the
spherically symmetric case) instead of a spatial coordinate.

The Euler equations then take the form:

∂

∂t

(

1

ρ

)

− ∂

∂m
(rpu) = 0 , (5.44)

∂u

∂t
+ rp

∂P

∂m
= 0 , (5.45)

∂

∂t

[

P

(γ − 1)ρ
+
u2

2

]

+
∂

∂m
(rpPu) = 0 , (5.46)

where ρ is the density, u the flow velocity and P the pressure. The external
forces and energy gains/losses have been set to zero.
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Chapter 6

Sound waves and linear stability
analysis

6.1 General considerations

In this chapter we discuss how to linearize the gasdynamic equations, and use
this method to derive a few simple solutions. These are plane sound waves,
and plane Kelvin-Helmholtz and Rayleigh-Taylor instabilities.

6.2 Sound waves

Let us consider the propagation of a 1D (plane) sound wave. A sound wave is
defined as a small perturbation (in density, velocity and pressure) which travels
through a gas. We will consider the most simple case of a medium which is
initially homogeneous (with constant density ρ0 and pressure P0) and at rest
(zero velocity). We then write the perturbed density, pressure and velocity as

P + P0 , ρ+ ρ0 , u , (6.1)

with P ≪ P0, ρ ≪ ρ0 and u “with small values” (we will discuss later what
this actually means).

If we insert these variables into the 1D, plane gasdynamic equations (eqs.
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5.35-5.37), we obtain

∂

∂t
[ρ+ ρ0] +

∂

∂x
[(ρ+ ρ0) u] = 0 , (6.2)

∂

∂t
[(ρ+ ρ0) u] +

∂

∂x

[

(ρ+ ρ0) u
2 + P + P0

]

= 0 , (6.3)

∂

∂t
[E] +

∂

∂x
[u (E + P + P0)] = 0 , (6.4)

with E = (ρ+ ρ0)u
2/2 + (P + P0)/(γ − 1).

We now consider that ρ0 and P0 are constant, and we neglect all terms with
quadratic or cubic dependence on the perturbations (and their spatial or time
derivatives). In practice we eliminate all terms involving the terms ρu, u2 or
uP . In this way, we obtain the linearized, plane gasdynamic equations :

∂ρ

∂t
+ ρ0

∂u

∂x
= 0 , (6.5)

ρ0
∂u

∂t
+
∂P

∂x
= 0 , (6.6)

∂P

∂t
+ γP0

∂u

∂x
= 0 . (6.7)

We now play at combining these equations to obtain differential equations for
each of the perturbed variables (ρ, P and u). For example, if we take the
time derivative of eq. (6.6), and subtract from this the spatial derivative of
eq. (6.7), we obtain

∂2u

∂t2
− γP0

ρ0

∂2u

∂x2
= 0 . (6.8)

Through combinations of eqs. (6.5-6.7) we find that the other two perturbed
quantities (ρ and P ) follow the same differential equation. Therefore, all three
variables f satisfy the differential equation

∂2f

∂t2
− c2s

∂2f

∂x2
= 0 , (6.9)

with

cs ≡
√

γP0

ρ0
. (6.10)
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Eq. (6.9) allows any solution of the form f(x − cst) or f(x + cst) (or linear
combinations of these two forms), corresponding to waves travelling in the −x
or +x directions (respectively). These waves travel at the sound speed cs,
defined by eq. (6.10). The linear waves correspond to small velocity pertur-
bations with u≪ cs.

6.3 Isothermal sound waves

In ISM flows, it is common to assume that the flow is approximately isothermal.
This is a reasonable approximation, e. g., for flows within H II regions in which
the rapid heating/cooling processes tend to fix the temperature at a value
T0 ≈ 104 K. In order to model sound waves in such an environment, one uses
the linearized continuity and momentum equations (eqs. 6.5-6.6), and replaces
the energy equation with the condition

P = ρ
RT0
µ

, (6.11)

where R is the gas constant and µ the molecular weight. The molecular weight
is µ = m/mH , where m is the average mass of the gas particles and mH is the
mass of Hydrogen.

The solution of this system of equations corresponds to waves that travel at a
velocity

cis =

√

RT0
µ

=

√

P0

ρ0
. (6.12)

This is called the “isothermal sound speed”, which coincides with the “adia-
batic” sound speed (see eq. 6.10) evaluated for a γ = 1 specific heat ratio.

6.4 Kelvin-Helmholtz instability

We consider the interface between two parallel flows with different velocities Ua

(for y > 0) and Ub (for y < 0), with corresponding densities ρa and ρb. We write
the Euler equations in a reference frame with x parallel to the flow velocity,
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Figure 6.1: Schematic diagram of the interface between two parallel flows of
velocities Ua and Ub and densities ρa and ρb. The interface initially lies on the
y = 0 axis, but is perturbed at later times, following the η(x, t) curve.
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and y perpendicular to the interface, as shown in the schematic diagram of
Figure (6.1).

We consider the 2D flow equations, the incompressible (!) continuity equation:

∂u

∂x
+
∂v

∂y
= 0 , (6.13)

the x-component of the momentum equation in the form of Newton’s law:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂P

∂x
, (6.14)

and the y-component:

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂P

∂y
, (6.15)

where u and v are the flow velocities along the x- and y-axes (respectively),
and P is the gas pressure. The density ρ has a value ρa for the top flow, and
ρb for the bottom flow (see Figure 6.1). These two flows are initially separated
by the y = 0 axis, but at larger times the boundary is perturbed, and has a
shape y = η(x, t) (see Figure 6.1) with an associated vertical velocity vη given
by:

vη =
∂η

∂t
+ u

∂η

∂x
. (6.16)

We now propose small perturbations on the flow variables, so that u→ U + u
(where U has a value Ua for the top flow and Ub for the bottom flow) with
u ≪ U , and P → P + P , (with constant P0) with P ≪ P . Also, we assume
thast v is small.

We then re-write equations (6.13-6.16) keeping only linear terms in u, v, P
and their derivatives, obtaining:

∂u

∂x
+
∂v

∂y
= 0 , (6.17)

unchanged with respect to the full equation (6.13),

∂u

∂t
+ U

∂u

∂x
= −1

ρ

∂P

∂x
, (6.18)
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∂v

∂t
+ U

∂v

∂x
= −1

ρ

∂P

∂y
, (6.19)

and

vη =
∂η

∂t
+ U

∂η

∂x
. (6.20)

In these equations. U = Ua and ρ = ρa for the top flow, and U = Ub. ρ = ρb
for the bottom flow.

We now propose a solution of the form:

u = e−i(kx−nt)u0(y) , (6.21)

v = e−i(kx−nt)v0(y) , (6.22)

P = e−i(kx−nt)P0(y) , (6.23)

and
η = e−i(kx−nt)η0 , (6.24)

with constant n, k and η0. We suppose that the x-dependence is a sine/cosine,
so that k is real. On the other hand, n is complex. with an imaginary part
which is the “growth rate” giving an exponential rise/decay of the solution.

Now, substituting these equations into equations (6.17-6.20) we obtain:

∂v

∂y
= iku , (6.25)

kP

ρ
= (n− kU)u , (6.26)

1

ρ

∂P

∂y
= i(n− kU)v , (6.27)

and
vη = i(n− kU)η . (6.28)

Equations (6.25-6.28) are the result of substituting the proposed solution
(equations 6.21-6.24) into the linearized equations (6.17-6.20).

We now take the y-derivative of equation (6.27), and combine it with equations
(6.25-6.26) to obtain:

∂2P

∂y2
= k2P , (6.29)
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which can be integrated to obtain:

P0(y) = p0e
−ky , y > 0 ; P0(y)) = p0e

ky , y < 0 , (6.30)

where we have chosen the non-divergent exponentials for the top and bottom
flows. We should note that the boundary between the two flows lies on y = 0
only for t = 0, and here (consistent with the linearity of the equations) we are
not considering the perturbation of the boundary for t > 0.

Now, substituting equations (6.30) and (6.28) into equation (6.27), for y → η+

we have:
kPa

ρa
= −(n− kUa)

2η , (6.31)

and for y → η−:
kPb

ρb
= −(n− kUb)

2η , (6.32)

where Pa and Pb are the pressures on both sides of the interface. The Pa = Pb

condition then gives:

(n− kUa)
2ρa = −(n− kUb)

3ρb , (6.33)

with solution

n = k

[

ρaUa + ρbUb

ρa + ρb
± i

√
ρaρb

( |Ua − Ub|
ρa + ρb

)]

. (6.34)

Therefore, n has a non-zero imaginary part (with both signs) that gives an
exponential growth for perturbations of all spatial wavenumbers k.

This “Kelvin-Helmholtz instability” gives rise to turbulence at the boundary
between two flows of different velocities (e.g., at the outer boundary of a jet
beam). There is an extended literature of the application of this instability,
including the effect of having a compressible flow, as well as the incorporation
of different geometries, to astrophysical flows.

6.5 Rayleigh-Taylor instability

It is possible to carry out the analysis of the previous section also including
the presence of an external gravitational acceleration g in the −y direction.
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Following a similar derivation, one obtains a dispersion relation of the form:

n = k





ρaUa + ρbUb

ρa + ρb
±

√

g

k

ρb − ρa
ρa + ρb

− ρaρb

(

Ua − Ub

ρa + ρb

)2


 , (6.35)

This dispersion relation shows that in the ρb > ρa case (“heavy fluid on the
bottom”), n is real if

k ≤ g

ρaρb

ρ2a − ρ2b
(Ua − Ub)

2 , (6.36)

corresponding to stable solutions. The interface becomes unstable only if this
condition is not met. It has been written in the astrophysical literature that
this “stability limit” provides an explanation of the appearance of waves for
a strong enough wind blowing over a surface of water. However, checking the
geophysical literature one rapidly sees that the formation of waves requires a
considerably more complex analysis.

If one sets Ua = Ub, for ρa > ρb (“heavy fluid on top”) one still has an imaginary
part of n (with both positive and negative values), leading to an unstable
growth of perturbations. This is called the “Rayleigh-Taylor instability”, and
also has extensive astrophysical applications.
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Chapter 7

Shock waves

7.1 General considerations

As in general astrophysical flows range from transonic to hypersonic condi-
tions, an understanding of shock waves is essential. Shock waves are generally
produced in supersonic flows.

For example, in Fig. 7.1 we show a numerical simulation of the steady flow
pressure stratification produced by a blunt bullet moving at a M = 30 Mach
number within a uniform, γ = 7/5 medium. It is clear that the pressure shows
two surfaces with discontinuous pressure increases. These two shock waves are
called the “bow shock” and the “tail shock”.

Many astrophysical flows produce directly observable shock waves. Notable
examples are jets (from stars or from massive compact objects) and supernovae.

7.2 Plane-parallel shock waves

Let us now consider the simplest possible shock wave problem : a plane shock
wave moving along the direction normal to the shock surface. If we consider
a coordinate system moving with the shock wave, with the x-axis pointing
towards the post-shock direction, we have the situation shown in Fig. 7.2.

The transition from the pre-shock flow variables (ρ0, u0 and P0, see Fig. 7.2)
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Figure 7.1: Pressure stratification in a blunt bullet flow moving at M = 30 in
a γ = 7/5 gas, well into the hypersonic regime.
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Figure 7.2: Schematic diagram of a plane-parallel shock, seen in a coordinate
system which travels with the shock, which at all times is then located at
x = 0.
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to the post-shock variables (ρ1, u1 and P1) occurs over distances comparable
to the mean free path λ of the particles in the gas. Therefore, the transition
is generally not appropriately described by the gasdynamic equations, and a
kinetic approach has to be used.

Because shock waves correspond to discontinuous solutions of the gasdynamic
equations, the mass, momentum and energy gasdynamic equations (eqs. 5.35-
5.37) do give the appropriate relations between the pre- and post-shock vari-
ables. However, a description of the details of the transition lie beyond a
gasdynamic description.

In the reference system moving with the shock wave (see Fig. 7.2) the problem
has no time-dependence. Hence, the 1D gasdynamic equations simplify to :
ρu = const., ρu2+P = const., u(E+P ) = const. (with E = ρu2/2+P/(γ−1)),
where we have assumed that the energy loss/gain within the shock transition
is negligible. Therefore, the pre- and post-shock variables follow the relations :

ρ0u0 = ρ1u1 , (7.1)

ρ0u
2
0 + P0 = ρ1u

2
1 + P1 , (7.2)

u0

(

ρ0u
2
0

2
+

γP0

γ − 1

)

= u1

(

ρ1u
2
1

2
+

γP1

γ − 1

)

. (7.3)

From these equations, we can find the postshock variables (ρ1, u1 and P1) as
a function of the preshock variables (ρ0, u0 and P0)

In order to do this, we first combine eqs. (7.1-7.2) to obtain :

P1 = P0 + ρ0u
2
0

(

1− ρ0
ρ1

)

. (7.4)

Substituting u1 (from eq. 7.1) and P1 (from eq. 7.4) into eq. (7.3), we obtain
a quadratic equation for ρ1/ρ0 :

(

ρ1
ρ0

)2 [
(γ − 1)M2

0

2
+ 1

]

−
(

ρ1
ρ0

)

(

γM2
0 + 1

)

+
(γ + 1)M2

0

2
= 0 , (7.5)

where M0 = u0/c0, with c0 =
√

γP0/ρ0. This equation has solutions

ρ1
ρ0

=
γM2

0 + 1±
√

(M2
0 − 1)2

(γ − 1)M2
0 + 2

, (7.6)
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giving ρ1/ρ0 = 1 for the “−” sign, and giving the compression at a shock wave
for the “+” sign :

ρ1
ρ0

=
(γ + 1)M2

0

(γ − 1)M2
0 + 2

. (7.7)

Combining eqs. (7.7) and (7.1) we then obtain

u1
u0

=
(γ − 1)M2

0 + 2

(γ + 1)M2
0

(

=
ρ0
ρ1

)

, (7.8)

and using eq. (7.4) we finally obtain :

P1 = P0 +
2(M2

0 − 1)

(γ + 1)M2
0

ρ0u
2
0 . (7.9)

Eqs. (7.7-7.9) are called the “shock jump relations” (alternatively, the “Rankine-
Hugoniot” or just “Hugoniot” relations).

For M0 = u0/c0 ≫ 1, we obtain the so-called “strong shock” jump relations :

ρ1
ρ0

=
u0
u1

=
γ + 1

γ − 1
, (7.10)

P1 =
2

γ + 1
ρ0u

2
0 . (7.11)

As in most cases ISM shocks are indeed hypersonic (i. e., with M0 ≫ 1),
these strong shock relations are applicable in most of the problems that will
be covered in this book.

7.3 Comments on the gasdynamic derivation

of the shock jump relations

In the previous section, we have obtained the correct relation between the pre-
and post-shock variables of an energy conserving flow. One might question
why for this derivation we have chosen to use the energy equation (apart from
the mass and momentum equations) rather than the entropy equation (5.42),
which for a plane-parallel,time-independent flow is Pρ−γ=const. .
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Our choice of the energy equation is due to the fact that the thermal+kinetic
energy (per unit mass) of the flow is conserved when going through a shock, but
the entropy is not conserved. The lack of entropy conservation can be verified
by calculating the pre- and post-shock entropies with the corresponding sets
of flow variables.

In order to produce the shock transition it is necessary to have a dissipative
process that converts kinetic energy of the flow into thermal energy (while
keeping a constant thermal+kinetic energy per unit mass). In weak shocks
(with M0 ∼ 1), the dissipative process can be described in terms of a “vis-
cocity” of the flow, and the shock transition can in principle be described in
terms of the viscous gasdynamic (or “Navier-Stokes”) equations.

For strong shocks (with M0 ≫ 1), a viscous description is not appropriate
(because the width of the shock transition is of the same order as the mean
free path of the particles), and the full transport equation for the gas particles
(the so-called “Boltzmann equation”) has to be solved in order to calculate the
shock transition. This problem is not addressed in this book, but has some as-
trophysical applications (basically, in the description of “non-radiative shocks”
in supernovae remnants, in which the shock transition is directly observed).

Another astrophysical application of models of the shock transition are the
so-called “C-shocks” (the C signifying “continuous”), in which the shock tran-
sition in a weakly ionised gas is the result of the drag between ions and neutrals
(in particular, through the charge exchange process). The transition between
pre- and post-shock variables in these shocks can be fully described with the
gasdynamic equations (with two sets of equations describing the neutral and
ionised components of the gas, and including appropriate coupling terms).
This problem is also not discussed in this book.

7.4 Shock with radiative cooling

From the strong shock jump conditions (eqs. 7.10-7.11), we see that the post-
shock temperature T1 is given by :

T1 =
P1µmH

kρ1
=

2(γ − 1)

(γ + 1)2
µmHu

2
0

k
= 1.13× 105 K

( u0
100 km s−1

)2

, (7.12)
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where k is Boltzmann’s constant, µ is the molecular weight of the gas andmH is
the mass of H. The third term of the equation was calculated assuming γ = 5/3
and µ = 1/2 (appropriate for a fully ionised, H gas). We have normalized the
relation to a typical u0 = 100 km s−1 velocity for a shock in a SNR or in a
stellar jet.

This hot gas cools, emitting radiation at IR, optical and UV wavelengths to a
temperature of a few thousand K. So, we assume that the cooling region ends
when the gas has attained a temperature T2 ∼ 103 K. At this point, the gas has
recombined, and has an isothermal sound speed c2 =

√

kT2/µmH ∼ 3 km s−1.

We can then use the mass and momentum conservation equations (eqs. 7.1-
7.2) to determine the value of ρ2 after the cooling region. Combining these
two equations, we obtain the quadratic equation

ρ2c
2
2 − ρ2

(

u20 + P0

)

+ ρ20u
2
0 = 0 , (7.13)

which has the shock solution :

ρ2
ρ0

=
c20
2c22

[

M2
0 + 1 +

√

M4
0 + 2M2

0 (1− 2α) + 1

]

, (7.14)

where M0 = u0/c0 and α = (c2/c0)
2, with c0 and c2 being the pre-shock and

post-cooling region isothermal sound speeds (respectively).

The strong shock relation (obtained for M0 ≫ 1) then is :

ρ2
ρ0

=

(

u0
c2

)2

. (7.15)

In other words, the compression is equal to the square of the Mach number
M0,2 = u0/c2 computed with the pre-shock velocity and the post-cooling region
sound speed.

For the case in which c2 = c0, we obtain :

ρ2
ρ0

=M2
0 . (7.16)

This is called the “isothermal shock” jump relation, and is valid for all Mach
numbers.

117



7.5 Oblique shock jump relations

Let us now consider a plane, oblique shock. In such a shock, the flow enters
the shock at an angle (with respect to the shock front) different from π/2, and
is refracted at its passage through the shock. This is shown schematically in
Fig. 7.3.

Let us consider a Cartesian coordinate system at rest with the shock, with its
x-axis pointing along the normal to the plane shock (towards the post-shock
region) and its y-axis in the plane that contains the normal to the shock and
the pre-shock velocity u0. From simple symmetry arguments it is clear that
the post-shock velocity u1 will also lie on the xy-plane.

We then write the steady, 2D Euler equations (see eqs. 5.27-5.30) with no
y-dependence :

∂

∂x
(ρun) = 0 , (7.17)

∂

∂x

(

ρu2n + P
)

= 0 , (7.18)

∂

∂x
(ρunut) = 0 , (7.19)

∂

∂x

{

un

[

ρ

2

(

u2n + u2t
)

+
γP

γ − 1

]}

= 0 , (7.20)

where un and ut are the components of the flow velocity parallel to the x- and
y-axes, respectively (see Fig. 7.3).

From these equations, we can obtain the relations that have to be satisfied
between the pre-shock variables (ρ0, un,0, ut,0 and P0), and the post-shock
variables (ρ1, un,1, ut,1 and P1) :

ρ0un,0 = ρ1un,1 , (7.21)

ρ0u
2
n,0 + P0 = ρ1u

2
n,1 + P1 , (7.22)

ρ0un,0ut,0 = ρ1un,1ut,1 , (7.23)

un,0

[

ρ0
2

(

u2n,0 + u2t,0
)

+
γP0

γ − 1

]

= un,1

[

ρ1
2

(

u2n,1 + u2t,1
)

+
γP1

γ − 1

]

. (7.24)
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Figure 7.3: Schematic diagram of a plane, oblique shock.
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Eqs. (7.21) and (7.23) can be combined to give the jump condition for the
tangential velocity :

ut,1 = ut,0 , (7.25)

in other words, the component of the velocity parallel to the shock wave is
preserved when going through the shock.

Now, combining eqs. (7.21), (7.24) and (7.25), we obtain an energy equation
involving only the normal component of the flow velocity :

u2n,0
2

+
γ

γ − 1

P0

ρ0
=
u2n,1
2

+
γ

γ − 1

P1

ρ1
. (7.26)

It is clear that eqs. (7.21), (7.22) and (7.23) are the same equation system
as the one for a plane-parallel shock (eqs. 7.1-7.3, with eq. 7.26 actually
being the ratio between eqs. 7.1 and 7.3). Therefore, the compression and the
post-shock pressure are given by eqs. (7.7) and (7.9) :

ρ1
ρ0

=
un,0
un,1

=
(γ + 1)M2

n,0

(γ − 1)M2
n,0 + 2

, (7.27)

P1 = P0 +
2(M2

n,0 − 1)

(γ + 1)M2
n,0

ρ0u
2
n,0 , (7.28)

but with un,0 instead of u0, and the pre-shock Mach number being replaced
with the Mach number Mn,0 = un,0/c0 associated with the normal component
of the pre-shock velocity.

In the case of a radiative shock, eqs. (7.27-7.28) would have to be replaced
with the appropriate jump conditions, obtained by replacing the pre-shock flow
velocity u0 by un,0.

We should note that in most circumstances the oblique shock relations can be
applied to arbitrary shocks in a supersonic gas. For example, they can locally
be applied to curved shocks, provided that the radius of curvature of the
shock is much larger than the thickness of the shock transition. They can also
be applied to shocks in time-dependent flows, provided that the evolutionary
timescale of the flow is much larger than the time-scale for passage of the gas
through the shock transition. These conditions are generally contained by the
conditions required for a fluid description to be appropriate (see the beginning
of chapter 5).
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Figure 7.4: Schematic diagram of a flow constituted by a supersonic wind
which collides with a solid wall (perpendicular to the direction of the flow).

7.6 Examples of flows with plane shock fronts

7.6.1 Flow colliding normally with a rigid wall

Let us consider the problem of a plane, supersonic wind (of density ρw, pressure
Pw and velocty vw) hitting a rigid wall (oriented perpendicular to the direction
of the wind velocity). The physical situation is shown in Fig. 7.4.

A shock is formed initially against the wall, and this shock then travels (at
a velocity vs, see Fig. 7.4) in the upstream direction, forming a post-shock
region in which the gas is at rest with respect to the wall. In a reference frame
moving with the shock, we have a medium with pre-shock flow parameters
ρ0 = ρw, P0 = Pw and u0 = vw + vs. The fact that the post-shock flow is at
rest with respect to the wall implies that u1 = vs.

121



Using eq. (7.8), we have that

vw + vs
vs

=
γ + 1

γ − 1 +
2c2

0

(vw+vs)2

, (7.29)

where c0 =
√

γP0/ρ0 is the pre-shock sound speed. From this equation, we
can derive a quadratic equation for vs :

2v2s + vsvw(3− γ)− 2c20 − (γ − 1)v2w = 0 , (7.30)

which has the solution

vs
vw

=
1

4

[

γ − 3 +
√

(γ + 1)2 + 16(c0/vw)2
]

, (7.31)

which in the hypersonic regime (vw ≫ c0) gives

vs
vw

=
γ − 1

2
. (7.32)

7.6.2 Flow hitting a wedge

Let us consider the problem of a supersonic flow which hits the leading edge of
a rigid wedge. If the wedge has a small enough half-opening angle φ, a “regular
shock reflection” occurs. In this configuration, two plane shocks (which are
attached to the leading edge) redirect the incoming flow to directions parallel
to the two plane surfaces of the wedge (see the top frame of Fig. 7.5). For
large enough values of φ, instead of a regular shock reflection, a detached bow
shock is formed (right frame of Fig. 7.5).

The regular reflection regime has a simple analytic solution. For deriving this
solution, we consider one of the two sides of the flow/wedge interaction, as
shown in Fig. 7.6. We have a flow which hits the surface of a plane “shelf” (at
an angle φ to the surface), and an oblique shock (at an angle α to the surface)
redirects the incoming flow to a direction parallel to the shelf.

From Fig. 7.6 it is clear that the pre-shock flow (of velocity u0) has components
un,0 and ut,0 normal and parallel (respectively) to the shock given by :

un,0 = u0 sin(φ+ α) ; ut,0 = u0 cos(φ+ α) . (7.33)
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Figure 7.5: Pressure stratifications resulting from the interaction of a M =
30, γ = 7/5 flow (propagating to the right, along the abscissa) with a rigid
wedge. The three plots are labeled with the half-opening angle of the wedges.
The φ = 30◦ and φ = 40◦ flows are stationary. The flow obtained for the
φ = 50◦ wedge (right frame) is non-stationary, and the displayed stratification
corresponds to a time evolution equal to 3 times the flow crossing time scale
of the abscissa of the displayed domain. The displayed pressure stratifications
have been obtained with numerical simulations using the 2D Euler equations.
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Figure 7.6: Schematic diagram showing the interaction of a flow that hits a
plane, solid shelf (in black) at an angle φ to its surface. A regular reflection is
produced, with an oblique shock (at an angle α) that redirects the flow to a
direction parallel to the surface of the shelf.
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From the oblique shock jump conditions, the post-shock flow velocity then has
the normal and tangential components :

un,1 =
un,0
ξ

; ut,1 = ut,0 , (7.34)

where ξ is the compression at the shock. If the shock is strong, we have

ξ =
γ + 1

γ − 1
. (7.35)

The post-shock flow is parallel to the surface of the shelf. Therefore, the
component vsurf normal to the shelf of the post-shock flow has to be zero :

vsurf = ut,1 sinα− un,1 cosα = 0 . (7.36)

Combining eqs. (7.33), (7.34) and (7.36) we then obtain :

tan (α + φ) = ξ tanα . (7.37)

This is the equation that determines the angle α (between the shock and the
shelf) as a function of the incidence angle φ (see Fig. 7.6) and the compression
ξ at the shock.

Using the identity

tan (α + φ) =
tanα + tanφ

1− tanα tanφ
, (7.38)

we can rewrite eq. (7.37) in the form

ξ tan2 α +
1− ξ

tanφ
tanα + 1 = 0 . (7.39)

This quadratic equation has solutions

tanα =
ξ − 1

2ξ tanφ

[

1±
√

1− 4ξ tan2 φ

(ξ − 1)2

]

. (7.40)

The α vs. φ relations obtained (from eq. 7.40) for strong shocks with γ = 5/3
(→ ξ = 4) and γ = 7/5 (→ ξ = 6) are shown in Fig. 7.7.
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Figure 7.7: Angle α between the shock and the plane surface (in the regular
shock reflection problem) as a function of the incidence angle φ for a hypersonic
flow with γ = 5/3 (solid line) and γ = 7/5 (dashed line).
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In this Figure, we see that for a given φ there are two possible values of α
(obtained from the +/− signs of eq. 7.40). These are called the “strong”
(larger α value) and the “weak” solutions. It is an experimental fact that
regular reflections invariably adopt the weak solution. Numerical solutions of
this problem (see Fig. 7.5) also adopt the weak solution.

From Fig. 7.7 it is clear that there is a maximum possible value φmax beyond
which there are no solutions to the regular shock reflection problem. The value
of φmax is obtained by setting the square root term of eq. (7.40) to zero, which
gives

tanφmax =
ξ − 1

2
√
ξ
. (7.41)

Combining this equation with the strong shock jump condition (eq. 7.35), we
obtain φmax = 36◦.87 for γ = 5/3 and φmax = 45◦.58 for γ = 7/5.

For incidence angles of the flow φ > φmax a regular shock reflection is not
possible, and the “flow on wedge” problem then adopts a solution with a
curved bow shock (see the right frame of Fig. 7.5). There is no analytic
solution for this flow configuration.
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Chapter 8

1D, stationary, radiative shocks

8.1 General considerations

After the passage of an astrophysical shock wave, the hot, post-shock gas emits
radiation and cools again. Provided that the shock velocity is high enough,
the post-shock gas becomes rapidly ionised, and then emits a rich emission line
spectrum. This radiative energy loss cools the gas, and the ions recombine to
lower ionisation states.

The most simple possible model for this post-shock relaxation region is to
consider a stationary, plane-parallel flow. The plane-parallel approximation is
valid provided that the size of the relaxation region is small compared to the
radius of curvature of the shock wave (a condition not necessarily met in ISM
shock waves). The assumption that the flow is stationary is also dubious at
best, since many objects have evolutionary timescales which are comparable to
the post-shock cooling timescale. Also, it has been found that the relaxation
regions behind shock waves of high enough velocities (> 100 km s−1) are ther-
mally unstable, so that the stationary solutions are probably never attained
by a real shock.

Regardless of these problems, the plane-parallel, stationary radiative shock is
the most simple possible problem with direct application to ISM shocks from
which a concrete prediction of the emitted spectrum can be made. It serves
as an illustration of the elements that have to be considered when trying to
model more complex flows with shock waves in the ISM.
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8.2 The equations for the recombination re-

gion

From the 1D Euler equations (eqs. 5.35-5.37), we see that a radiative plane-
parallel, stationary, γ = 5/3 flow (in the absence of external forces) satisfies
the equations

ρu = ρ0u0 , (8.1)

ρu2 + P = ρ0u
2
0 + P0 , (8.2)

dh

dx
=
G− L

ρu
; h =

u2

2
+

5

2

P

ρ
, (8.3)

where ρ0, P0 and u0 are the flow variables at some point in which they are
known (in our case, these would be the pre-shock conditions), and G, L are
the energy gain and loss (respectively) per unit volume and time.

The procedure for calculating the structure of the recombination region is to
integrate numerically eq. (8.3) over a finite distance step ∆x, going from h(x)
to h(x+∆x), and then to use the relations

ρ =
(5/2)(P0 + ρ0u

2
0) +

√

(5/2)2(P0 + ρ0u20)
2 − 8hρ20u

2
0

2h
, (8.4)

P = P0 + ρ0u
2
0

(

1− ρ0
ρ

)

, (8.5)

u =
ρ0u0
ρ

, (8.6)

(which can be deduced from eqs. 8.1-8.3) to calculate the flow variables ρ, P
and u as a function of the “advanced position” specific enthalpy h(x + ∆x)
and the pre-shock variables ρ0, P0 and u0. From the flow variables one can
then calculate

n =
ρ

m
; T =

P

k(n+ ne)
, (8.7)

where n is the ion+atom number density, ne the electron density, and m is the
average mass per atom or ion (m = mH for a pure H gas, and m = 1.3mH for
a 90% H and 10% He gas).

Before being able to integrate eq. (8.3) one has to calculate what is the ioni-
sation state of the gas. This is necessary in order to calculate ne (see eq. 8.7)
and to calculate the heating and cooling functions (G and L, respectively).
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8.3 The ionisation state of the gas

If the gas were in coronal ionisation equilibrium, we could compute the ionisa-
tion state of the gas as a function of the local temperature. Unfortunately,
in the cooling region behind a shock wave the cooling and recombination
timescales are comparable, so that the gas is actually not in ionisation equi-
librium. Because of this, it is necessary to integrate the rate equations

u
dya,z
dx

= ne {ya,z+1αa,z+1(T ) + ya,z−1ca,z−1(T )− ya.z [αa,z(T ) + ca,z(T )]}+

ya,z−1φa,z−1 − ya,zφa,z , (8.8)

where ya,z = na,z/na is the fractional ionisation state of the ion of charge z of
element a, and the α, c and φ coefficients are the recombination, collisional
ionisation and photoionisation rates (respectively). We also have the auxilliary
relations :

∑

z

ya,z = 1 , (8.9)

∑

a

[

na

∑

z

ya,z

]

= n , (8.10)

∑

a

[

na

∑

z

zya,z

]

= ne , (8.11)

1

n

∑

a

nama = m, (8.12)

na = fa n , (8.13)

where ma is the mass and fa the abundance (by number) of element a.

This then represents the main difficulty in computing the structure of the
relaxation region behind an astrophysical shock wave. In order to compute
the ionisation state of the gas (necessary for computing the electron density
ne and the heating and cooling functions) it is necessary to integrate a set of
rate equations (see eq. 8.8) including all of the relevant ions together with the
equation for the specific enthalpy (eq. 8.3).
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8.4 The photoionisation rates

The main difficulty in computing the ionisation rate equations (eqs. 8.8) is
naturally related to the photoionisation rates

φa,z =

∫ ∞

νa,z

4πJν
hν

aa,zν dν , (8.14)

where νa,z is the frequency associated with the ground state ionisation edge
and aa,zν the photionisation cross section of ion a, z.

The intensity Iν is obtained through an integration of the plane-parallel radia-
tive transfer equation :

µ
dIν
dx

= jν − κνIν , (8.15)

where the emission coefficient jν is dominated by the contribution from the
H Lyman continuum, but also has contributions from the He II and He III
recombination continua, and from resonance lines of a limited set of ions (see,
e. g., the paper of Shull and McKee [31]). In eq. (8.15), µ = cos θ where θ is
the angle between the propagation direction of the ray and the x-axis.

The radiative transfer equation (eq. 8.15) has the integral form (for µ > 0) :

Iν(x, µ) =
1

µ

∫ x

−∞

jν(x
′)e−τν(x′,x)/µdx′ , (8.16)

where

τν(x
′, x) =

∫ x

x′

κν(x
′′)dx′′ . (8.17)

A similar expression (but with integration limits from +∞ to x) is obtained
for directions with µ < 0. The average intensity Jν can then be computed as :

Jν(x) =
1

4π

∮

Iν dω =
1

2

∫ 1

−1

Iν(x, µ)dµ . (8.18)

Combining eqs. (8.16-8.18) and commuting the position and angular integrals,
we finally obtain :

Jν(x) =
1

2

∫ ∞

0

jν(x
′)E1 [|τν(x′, x)|] dx′ , (8.19)
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where the first order exponential integral E1(τ) is defined by

E1(τ) ≡
∫ ∞

τ

e−t

t
dt =

∫ 1

0

e−τ/µ

µ
dµ . (8.20)

Tabulations and rational/exponential approximations to E1(τ) can be found
in the book of Abramowitz & Stegun [1].

Therefore, in order to calculate the photoionisation rates it is necessary to com-
pute the average intensity Jν at all positions x along the flow (eqs. 8.17, 8.19
and 8.20) at least for a limited number of frequency values. For example, one
finds in the literature numerical models that use a set of frequencies coinciding
with the ionisation edges of all of the ions considered in the calculation.

In numerical integrations of the plane-parallel, radiative shock problem it is
found that in general the photoionisation rates do not play a dominant role.
Therefore, approximate solutions of the post-shock region can be obtained
neglecting the photoionisation rates in the ionisation rate equations eqs. 8.8).
Including the photoionisation rates forces one to do a more complex numerical
solution, involving an iterative procedure.

8.5 The minimal relaxation region model

Let us now consider a very simple model for the post-shock relaxation region.
In our model, we consider eqs. (8.3-8.7), and write a single equation for the
ionisation fraction y = nHII/nH of Hydrogen :

dy

dx
=
ny

u
[(1− y)c(T )− yα(T )] , (8.21)

with the interpolation functions given after eq. (3.57) for the α(T ) and c(T )
coefficients. In this equation we have set ne = yn, nHII = yn and nHI =
(1− y)n, with n = ρ/m (where m ≈ mH).

We now set G = 0 (neglecting the energy gain due to photoionisation, con-
sistently with the fact that we have neglected the photoionistion rates in eq.
8.21) and compute L as :

L = n2y(1− y)c(T )χH + n2yT 0.63
(

6.1× 10−19
)

[

1− e−(T/105)1.63
]

, (8.22)
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where the first term on the right is the cooling due to collisional ionisation of H
(with χH = 13.6 eV) and the second term is an analytic approximation to the
temperature behaviour of the coronal ionisation cooling function (all variables
are in cgs units).

We now choose a set of pre-shock parameters : u0, T0, n0 and y0, and numeri-
cally integrate eqs. (8.3) and (8.21) until the gas recombines and reaches low
temperatures. Results of this exercise obtained for T0 = 100 K, n0 = 100 cm−3,
y0 = 10−4 and u0 = 50, 100 km s−1 are shown in Fig. 8.1.

These solutions show the typical stratification of the post-shock relaxation
region : a region close to the shock wave in which the gas gets collisionally
ionised, followed by a more extended, cooler region in which H eventually
recombines again. This latter region is called the “recombination” or “cooling”
region. There is an abundant literature on solutions of this type, of which
Hartigan et al. [14] is a standard reference.

8.6 The cooling distance

From models of the relaxation region behind a plane-parallel shock it is possible
to calculate a “cooling distance” dc. We define dc as the distance from the shock
to the point where the temperature has dropped to a value of 104 K. It is also
possible to choose another value for this temperature (e. g., 103 K), but it is
clear from Fig. 8.1 that for a range of shock velocities similar values for dc are
obtained regardless of the precise temperature value that has been chosen.

Fig. 8.2 shows the cooling distance (to 104 K) as a function of shock velocity
u0, for a pre-shock number density n0 = 100 km s−1, obtained from the shock
model tabulation of Hartigan et al. [14]. In order to obtain the scaling of
the cooling distance with pre-shock density, we consider the following scaling
argument. The cooling distance dc can be estimated as :

dc ∼
ET,1

L1

u1 ∝
n1kT1u1
n2
1Λ(T1)

∝ f(u0)

n0

. (8.23)

In other words, the cooling distance is given by the ratio between the post-
shock thermal energy (ET,1) and cooling function (L1 = n2

1Λ(T1), assuming
low density regime cooling) multiplied by the post-shock velocity u1. In the
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Figure 8.1: Structures of the relaxation region behind a shock wave computed
from the “minimal model” described in the text.
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Figure 8.2: Cooling distance (to 104 K) as a function of shock velocity u0 for
shocks with a pre-shock number density n0 = 100 cm−3 (values from Hartigan
et al. [14]).
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last proportionality of eq. (8.23), we have used the fact that for a strong shock,
the post-shock velocity is u1 = u0/4, the post-shock density is n1 = 4n0 (eqs.
7.6 and 7.8), and the post-shock temperature T1 is a function of the pre-shock
velocity u0 (eq. 7.12).

Therefore, provided that the cooling function is in the low density regime (i. e.,
L = n2Λ(T )), the cooling distance is proportional to the ratio of a function of
the shock velocity (f(u0), see eq. 8.23) and the pre-shock density n0. If one
looks at the predictions of the radiative shock models of Hartigan et al. [14],
it is clear that the dc ∝ n−1

0 scaling is indeed satisfied. The dependence of dc
on the shock velocity u0 is shown in Fig. 8.2.

Different analytic fits to this dc vs. u0 dependence have been suggested in the
literature. A possible fit (incorporating both the n0 and the u0 dependencies)
is :

dc =

(

100 cm−3

n0

)

×
{

[

3× 1011cm
]

( u0
100 km s−1

)−6.4

+
[

8× 1013cm
]

( u0
100 km s−1

)5.5
}

. (8.24)

This fit is shown (together with the dc values of Hartigan et al. [14]) in Fig.
8.2.

8.7 Preionisation

Shocks of velocity higher than ∼ 100 km s−1 have a “radiative precursor”. This
is a region ahead of the shock wave in which ionising photons produced by the
post-shock region photoionise the gas, producing a leading photoionised region
(see Fig. 8.3). This region can be computed by solving the gasdynamic (8.1-
8.3) and rate (8.8) equations, including the photoionisation rate and heating
terms.

In this section, we present a simple, analytic model for this region (following
Shull and McKee [31]). We first take the results from the shock models of
Raymond et al. [27], who give predictions of the flux F of ionising photons
emitted into the pre-shock region as a function of the shock velocity u0 and the
pre-shock density n0. The resulting F/(n0u0) ratio (which is only a function
of u0) predicted from these models is plotted in Fig. 8.4. This function can be
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Figure 8.3: Schematic diagram showing the photoionisation region ahead of a
shock wave. This region is preceded by an ionisation front (IF).

fitted with the interpolation :

F

n0u0
= v2.8−0.6v0

0 ; v0 =
u0

110 km s−1
< 2.458 ,

= 3.293 ; v0 ≥ 2.458 . (8.25)

A simple, Strömgren region argument gives the relation :

F = n0u0 + n2
0αHdp , (8.26)

where dp is the x-extent of the preionisation region (see Fig. 8.3), αH ≈
2.56×10−13 cm3s−1 (see eq. 3.13) is the H recombination coefficient, and n0u0
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Figure 8.4: The F/(n0u0) ratio between the emitted flux F of ionising photons
and the incident flux n0u0 of neutrals (entering the shock wave) is shown as a
function of the shock velocity u0.
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is the flux of incoming neutrals. From this equation, we obtain :

dp =
[

4.30× 1017cm
]

(

100 cm−3

n0

)

v0
(

v2.8−0.6v0
0 − 1

)

; v0 =
u0

110 km s−1
.

(8.27)
The resulting dp vs. u0 relation is shown in Fig. 8.5. It is clear that dp = 0
for u0 ≤ 100 km s−1. In this shock velocity regime, the material entering the
shock wave is only partially ionised, with the pre-shock H ionisation fraction
given in an approximate way by

y0 =
F

n0u0
, (8.28)

where the right hand side is given as a function of u0 by eq. (8.25). This
ionisation fraction is shown (as a function of u0) in Fig. 8.5.

8.8 The emission line spectra of shocks com-

pared to photoionised regions

The optical emission line spectra of evolved supernova remnants and of Herbig-
Haro objects (both of which arise in shock waves with velocities of∼ 100 km s−1)
show lines of a wide range of ionisation energies. For example, collisionally ex-
cited lines of [O III], [O II] and [O I], lines of [C III], [C II] and [C I], and lines
of [S III] and [S II]. Recombination lines of H and He are also seen. All of the
collisionally excited lines cited above are strong (i. e., of intensities compara-
ble to the ones of the H recombination lines), with the higher ionisation lines
absent in some objects.

Photoionised regions have qualitatively different spectra, with recombination
lines of H and He and collisionally excited lines of ionised species, but with very
faint lines of neutral (e. g., [C I] and [O I]) or low ionisation energy species
(e. g., [S II]). The explanation for this is that C and O are at least singly
ionised (and S twice ionised) within the Strömgren radius, and that outside
the ionised region (where we do have C I and O I) the electron density is too
small to produce an appreciable collisional excitation of the levels giving rise to
the emission lines. Therefore, in photoionised regions the emission of lines from
neutrals only comes from the transition region around the Strömgren radius,
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Figure 8.5: “Strömgren size” of the preionisation region dp (top) and pre-shock
H ionisation fraction y0 (bottom) as a function of shock velocity u0 for shocks
with n0 = 100 cm−3.
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where the gas is partially neutral (so that both neutrals and an appreciable
electron density are present). Because this transition region is very narrow
compared to the size of the photoionised region, the lines that exclusively
come from the transition region are very faint compared to the lines produced
within the bulk of the photoionised region.

On the other hand, the transition region between ionised and neutral gas is
by far the densest part of a post-shock cooling region, so that its emission
dominates the emission spectrum produced by the shock. The spectrum of a
shock therefore corresponds to a transition region in which all ionisation states
present (including neutrals) contribute strong emission lines.
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Chapter 9

The hydrodynamic expansion of
an HII region

9.1 The final, pressure equilibrium configura-

tion

Following the expansion to the initial Strömgren radius (see section 3.4.4), the
hot, high pressure ionised region pushes away the cold, neutral surrounding gas.
This expansion of the HII region stops when the photoionised gas has lowered
its density enough so as to reach pressure equilibrium with the surrounding,
undisturbed neutral gas. This chapter describes the model derived in [24] for
the hydrodynamical expansion of an H II region.

Let us consider a star with an ionising photon rate S∗ in a uniform, neutral
medium of density n0 and isothermal sound speed c0 (c0 ≈ 1 km s−1 for a
100 K environmental temperature). The initial, constant density expansion
phase (section 3.4.4) leads to the formation of an ionised region of radius

RS =

(

3S∗

4πn2
0α

)1/3

, (9.1)

where α = 2.59× 10−13cm3s−1 is the case B recombination coefficient of H at
104 K (see equation 3.8). The ionised region has a temperature ∼ 104 K, so
that its isothermal sound speed is ci ≈ 10 km s−1.
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The HII region will then expand until its number density (of atoms+ions)
reaches a value nf , determined by the condition of pressure equilibrium with
the surrounding environment :

nfc
2
i = n0c

2
0 → nf = n0

(

c0
ci

)2

. (9.2)

The Strömgren radius of the pressure equilibrium configuration is then:

Rf =

(

3S∗

4πn2
fα

)1/3

=

(

ci
c0

)4/3

RS . (9.3)

In other words, given that ci/c0 ≈ 10 (see above), the final radius of the HII
region (corresponding to the pressure equilibrium configuration) is ∼ 20 times
the initial Strömgren radius.

The mass of the final HII region then is :

Mf =
4πR3

f

3
nf1.3mH =

(

ci
c0

)4

Mi , (9.4)

where Mi is the mass within the initial Strömgren radius (before the hydro-
dynamic expansion), and 1.3mH is the mass per atom/ion of a gas with a H
fractional abundance (by number) of 0.9 and an He abundance of 0.1 . There-
fore the mass of the HII region grows by a factor of ∼ 104 as it evolves from
the initial Strömgren radius to the final, pressure equilibrium configuration.

Interestingly, the expanding HII region pushes out an environmental mass

Menv ≈
4πR3

f

3
n01.3mH =

(

ci
c0

)2

Mf . (9.5)

Therefore, the expanding HII region pushes out a mass Menv which is ∼ 100
times larger than the mass Mion = Mf −Mi. Mion (≈ Mf ) is the mass that
was initially part of the neutral environment, which was photoionised (and
therefore incorporated into the HII region) during the hydrodynamic expansion
phase.

In this way we see that, from the point of view of the neutral environment,
the HII region acts as a piston, pushing out a mass ∼Menv (see equation 9.5),
and incorporating into the HII region only ∼ 1% of this mass.
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9.2 An analytic model for the expansion

We consider the problem of an HII region in its “hydrodynamic expansion
phase”, following the initial, constant density expansion to the “initial Strömgren
radius”, given by equation (9.1). Once the ionisation front has reached a radius
RS, the high temperature gas (of isothermal sound speed ci and initial density
n0) starts to expand, pushing a shock into the surrounding environment (of
sound speed c0 and density n0). If we assume that this shock is isothermal,
and that it has a shock velocity vs, the compression in the shock is = M2

0 ,
where M0 = vs/c0. The velocity of the post-shock material relative to the
shock therefore is

v1 = vs/M
2
0 . (9.6)

If the ionisation front moves at a velocity dR/dt (whereR is the time-dependent
radius of the photoionised region), the velocity vs (with which the shock travels
away from the source) is

vs =
dR

dt
+ v1 =

dR

dt
+ c20/vs , (9.7)

where for the second equality we have used equation (9.6). Let us note that
Dyson & Williams ([13]) assumed that vs = dR/dt. From this equation, it is
possible to find vs as a function of dR/dt:

vs =
1

2





dR

dt
+

√

(

dR

dt

)2

+ 4c20



 (9.8)

and dR/dt as a function of vs:

dR

dt
= vs −

c0
vs
. (9.9)

We now assume that the expanding HII region is approximately homogeneous
(of density n), and that it is in pressure balance with the shocked, neutral
material:

nc2i = n0v
2
s , (9.10)

and that it is in global photoionisation equilibrium:

S∗ =
4π

3
R3n2α →

(

n

n0

)2

=

(

RS

R

)3

, (9.11)
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where for deriving the second equality we have used the definition of the initial
Strömgren radius (equation 3.8).

We now combine equations (9.9-9.11) to obtain :

1

ci

dR

dt
=

(

RS

R

)3/4

− σ

(

R

RS

)3/4

, (9.12)

where σ = c20/c
2
i is equal to 1/2 times the environment-to-ionised medium

temperature ratio. If we set σ = 0 we regain the differential equation derived
by Dyson & Williams ([13]).

With the boundary condition R(t = 0) = RS, this equation can be integrated
analytically to obtain :

t′ =
1

3σ7/6
[f(r)− f(1)] , (9.13)

with

f(r) = −12σ1/6r1/4 + 2
√
3 tan−1

( √
3σ1/6r1/4

1− σ1/3r1/2

)

+ ln

[

(σ1/3r1/2 + σ1/6r1/4 + 1)(σ1/6r1/4 + 1)2

(σ1/3r1/2 − σ1/6r1/4 + 1)(σ1/6r1/4 − 1)2

]

, (9.14)

where r = R/RS and t′ = tci/RS.

It can be shown that for σ = 0 equation (9.13) coincides with the solution of
the book of Dyson & Williams ([13]) :

t′DW =
4

7

(

r7/4 − 1
)

. (9.15)

Figure 9.1 shows a comparison between the solution given (for different values
of σ = c20/c

2
i ) by equation (9.13) and “Dyson’s solution” (equation 9.15).

It is also possible to use the implicit R(t) solution that we have derived (equa-
tion 9.13) to derive an equation of motion for the shock wave driven into the
neutral medium. This is done by substituting the R(t) solution into equation
(9.12), and then inserting the derived dR/dt(t) into equation (9.8). In this way,
we obtain vs as a function of t, and one can in principle integrate this equation
numerically in order to obtain the radius of the shock wave as a function of
time. This is done in the following section in order to compare the resulting
prediction with the results of a gasdynamical simulation.
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Figure 9.1: The solution for an expanding HII region into a pressureless, σ = 0
environment (Dyson’s solution) is shown with a dashed line. The solid lines
correspond to solutions with the σ values given by the corresponding labels.
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9.3 Gasdynamic simulation

Let us now consider the gasdynamic equations for a spherically symmetric,
two-temperature photoionised region:

∂n

∂t
+
∂nu

∂R
+

2nu

R
= 0 , (9.16)

∂nu

∂t
+

∂

∂R

[

n(u2 + c2)
]

+
2nu2

R
= 0 , (9.17)

∂nHI

∂t
+
∂nHIu

∂R
+

2nHIu

R
= (n− nHI)

2α− nHIφ , (9.18)

φ =
S∗σν0
4πR2

e−τν0 ; τν0 = σν0

∫ R

0

nHI dR
′ , (9.19)

where R is the spherical radius, u the (radial) fluid velocity, n is the number
density of the (pure H) gas, nHI is the neutral H number density, n−nHI is the
ionised H density (equal to the electron density) and α = 2.59×10−13erg cm3s−1

is the case B recombination coefficient of H at 104 K. The photoionisation rate
φ is computed in the standard “grey HII region” approximation (in which the
frequency dependence of the photoionisation cross section σν is not considered),
so that it is given (as a function of the ionising photon rate S∗ and the Lyman
limit HI photoionisation cross section σν0 = 6.3×10−18cm2) by equation 9.19).
Finally, the sound speed is computed as a function of the neutral fraction of
the gas as :

c =

(

nHI

nH

)

c0 +

(

1− nHI

nH

)

ci , (9.20)

with ci = 10 km s−1 (the isothermal sound speed of the ionised gas) and
c0 = 1 km s−1 (the sound speed of the external, neutral gas).

We compute a model with S∗ = 1049 s−1 (the ionising photon rate of an O7
main sequence star). We initialize the spherical computational domain with a
uniform, n = 107cm−3 number density. Initially, we set nHI = 0 for R ≤ RS

and nHI = n for R > RS, where RS = 4.52× 1015cm is the Strömgren radius
obtained with the chosen values of S∗ and n.

With these initial conditions, equations (9.16-9.19) are integrated in a spherical
computational grid of 2000, equally spaced grid points extending from R = 0

148



to an outer radius Rout = 1018cm. This outer radius is large enough to contain
all perturbations within the computational domain.

Figure 9.2 shows the (R, t)-plane density stratification obtained from this sim-
ulation. The flow develops a low density, ionised region with a decreasing
expansion velocity. The ionised region reaches its maximum outer radius at
t ≈ 5.5 × 104 yr, and then its radius decreases slowly with time, and finally
stabilizes at a constant value for t > 1.3× 105 yr.

Also shown in Figure 9.2 are the analytic solution for the radius of the ionised
region (equation 9.13) and the corresponding radius of the shock propagating
into the neutral gas (obtained by integrating numerically equation 9.8). It
is clear that the analytic solution (equation 9.13) reproduces well both the
initial expansion and the final radius of the photoionised region. The analytic
solution, however, fails to reproduce the “overshoot” (i.e., the HII region with
radius larger than the final radius) obtained in the numerical simulation for
t ∼ 5 × 104 yr. Finally, in Figure 9.2 we also show Dyson’s solution (see
equation 9.15).

9.4 The timescale for convergence to the pres-

sure equilibrium configuration

The analytic model presented above allows us to make a simple prediction
of the timescale for the expansion to attain the final, pressure equilibrium
configuration. Equation (9.12) can be written in the form :

t =
Rf

c0
I , (9.21)

with

I =

∫ R/Rf

σ2/3

(

1

x3/4
− x3/4

)

dx , (9.22)

where Rf = RS/σ
2/3 is the final, pressure equilibrium radius of the HII region

expansion (with RS given by equation 3.8) and x = R/Rf is the spherical
radius in units of Rf .

In order to obtain a simple prediction of the relaxation timescale of the HII
region expansion, we now assume that σ = (c0/ci)

2 ≪ 1 (which is generally
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Figure 9.2: Density stratification in the (t, R)-plane of the numerical simulation
described in the text. The low density region corresponds to the photoionised
gas which first expands, and then reaches a final radius (determined by the
pressure equilibrium of the ionised and neutral regions). The solid line is
the prediction from the analytic model (equation 9.13) for the motion of the
ionisation front, and the long-dash line the corresponding prediction for the
motion of the shock wave. The short-dash line is Dyson’s solution (equation
9.15). The density stratification is shown with the logarithmic scale given (in
cm−3) by the top bar.
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true for a ∼ 104 K HII region expanding into a ∼ 100 K neutral/molecular
environment), and therefore set the lower limit of the I integral (equation 9.22)
to zero. We can then evaluate the time t in which a given fraction R/Rf of
the final radius is attained from equations (9.21-9.22).

For example, if we evaluate the I integral (equation 9.22, which has an analytic
solution similar to the one given in equation 9.13), for R/Rf = 0.8 we obtain
I = I8 = 0.7085 and for R/Rf = 0.9 we obtain I = I9 = 1.1353. Therefore,
for obtaining an estimate of the timescale tf in which the HII region attains
∼ 80-90% of its final radius Rf , we can set I ≈ 1 in equation (9.21), which
gives

tf ≈ 105 yr

(

Rf

0.1 pc

)(

1 km s−1

c0

)

≈ 3× 104 yr

(

S∗

1049s−1

)(

107cm−3

n0

)2/3(
1 km s−1

c0

)7/3

, (9.23)

where in the second equality we have set ci = 10 km s−1. Therefore, ultra
compact HII regions (with radii of ∼ 0.1 pc) have reached the final, pressure
equilibrium configuration in a tf ∼ 105 yr timescale. Normal HII regions, with
environmental densities n0 ∼ 100 cm−3 would reach the pressure equilibrium
configuration in ∼ 6.5× 107 yr, which is close to 2 orders of magnitude larger
than the main sequence lifetimes of the central O stars. Therefore, such regions
will still be in the expansion phase when the central stars end their life in a
SN explosion.
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Chapter 10

Wind-driven HII regions

10.1 The general problem

HII regions are produced by the photoionisation of the ISM due to the radiation
of one or more massive O/B stars. These stars also eject a stellar wind (see
Table 3.1), which pushes the surrounding ISM into a higher pressure, shell
structure. In order to have a more realistic model for the expansion of an HII
region, it is necessary to consider the effect of this wind (together with the
photoionisation process).

This problem has been described in some detail in the review paper of Capriotti
& Kozminski [9], as well as in the book of Dyson & Williams [13]. The more
detailed model of [25] is presented in the following sections.

10.2 The flow configuration

We assume that we have the flow configuration shown in Figure 10.1:

1. a star has an isotropic wind (of mass loss rate Ṁ and terminal velocity
vw) which is turned on at t = 0. At a time t > 0 the undisturbed wind
fills the inner, spherical region labeled “I” in the schematic diagram. The
star also emits S∗ ionising photons per unit time (starting at t = 0). The
outer boundary of this region is a spherical shock, which has a radius
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HII HI HIcoronal

Figure 10.1: Schematic diagram of a wind-driven HII region. The asterisk
indicates the position of the ionising photon+stellar wind source. Region I is
filled with the expanding stellar wind, ending at an outer shock (thick, inner
circle). Region II is filled with the hot, shocked wind, and ends in a contact
discontinuity (at a radius R). Region IIIa is the photoionised environment
region (of outer radius RS). Region IIIb is the perturbed, neutral environment
region, pushed out by the outer shock (of radius Rn), which travels into the
unperturbed environment (region IV).

much smaller than the ones of all of the other regions of the flow,

2. the shocked stellar wind produces a hot bubble of coronal gas (region II,
which is non-radiative for the case of an O/B central star) limited on the
outside by a contact discontinuity which separates the stellar wind from
disturbed environmental material,

3. the hot bubble pushes out a shock wave (the outer boundary of region
III in the schematic diagram) into the surrounding, neutral environment
(region IV). The shell of displaced environmental material has an inner
region (region IIIa) which is photoionised by the S∗ ionising photon rate
of the central star, and a neutral outer region (region IIIb).
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We first assume that region IIIa (the HII region) is much thinner than region
IIIb (the region filled with shocked, neutral material, see Figure 10.1). For
this “thin HII region” case, one can derive a model resulting in a first order
differential equation with an approximate analytic solution. This model is
described in section 10.3.

We then remove this assumption, and derive a “thick HII region” model, which
results in a differential equation which we integrate numerically. This model
is described in section 10.4.

10.3 Thin HII region model

10.3.1 Derivation of the model equation

As described in section 10.2, we assume that the stellar wind goes through a
shock, and fills in a large bubble of hot, coronal gas. The kinetic energy of
the wind feeds the thermal energy of the bubble and the kinetic energy of the
swept-up material. The resulting energy equation is:

Ṁv2w
2

t =
3

2
PV +

1

2
Msv

2
s , (10.1)

where Ṁ is the mass loss rate and vw the terminal velocity of the wind, P and
V are the pressure and volume (respectively) of the stellar wind bubble and
Ms and vs are the mass and velocity (respectively) of the swept-up shell.

Following the classical derivation (see [13]), we use the estimates

P ≈ ρ0Ṙ
2 , Ms ≈

4π

3
R3ρ0 , vs ≈ Ṙ , (10.2)

where R is the outer radius of the hot bubble (so that V = 4πR3/3).

Combining equations (10.1-10.2), we obtain an energy conservation equation
of the form:

Ṁv2w
2

t =
8π

3
R3P → P =

3Ṁv2wt

16πR3
, (10.3)

for a bubble of uniform pressure P and radius R at an evolutionary time t.
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The relations in equation (10.2) are strictly valid for the case in which the
swept-up material (regions IIIa and IIIb in Figure 10.1) forms a thin shell.
However, we will apply equation (10.3) for the case in which region IIIb (of
neutral swept-up gas, see Figure 10.1) is not thin. This is not likely to result in
large errors because the thermal energy of the shell dominates over the kinetic
energy of the shell by a factor of ≈ 3. Therefore, an incorrect estimate of the
kinetic energy of the (no longer thin) shell does not introduce large errors in
the energy equation.

We now follow the derivation of Chapter 7, and assume that the outer shock
(driven by the swept-up shell into the undisturbed environment) is isothermal,
so that the postshock velocity vps and pressure Pps are given by the isothermal
Rankine-Hugoniot relations:

vps =
c20
vn
, Pps = ρ0v

2
n , (10.4)

where vn is the shock velocity and ρ0 the ambient density. In the following,
we set Pps = P (where Pps is the post-shock pressure, see equation 10.4 and P
the pressure of the hot bubble, see equation 10.3).

Also, from the standard “shock pushed by a piston” problem, we have the
relation

vn = vps + Ṙ , (10.5)

where Ṙ is the velocity of the outer edge of the hot bubble.

Now, combining equations (10.3-10.5), we obtain the differential equation:

dr

dτ
=
( τ

r3

)1/2

−
(

r3

τ

)1/2

, (10.6)

where r = R/R0 (the dimensionless radius of the bubble) and τ = t/t0 (di-
mensionless time) with:

R0 ≡

√

3Ṁv2w
16πρ0c30

, t0 ≡
R0

c0
, (10.7)

where c0 is the isothermal sound speed of the undisturbed environment.

Once a solution r(τ) to equation (10.6) has been found, the outer radius Rn

of the perturbed, neutral environment (region IV of Figure 10.1) can be found
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by combining equations (10.4-10.5) to obtain

drn
dτ

=
( τ

r3

)1/2

, (10.8)

where rn = Rn/R0 and r comes from the previously obtained solution (of
equation 10.6). Equation (10.8) can then be integrated to obtain the (dimen-
sional) radius Rn = R0rn of the spherical shock travelling into the neutral
environment.

For parameters appropriate for a high density, ultracompact HII region pow-
ered by a main sequence O7 star we have:

R0 = 0.76 pc

(

Ṁ

5× 10−7M⊙yr−1

)1/2

( vw
2500 km s−1

)

(

107 cm−3

n0

)1/2(
1 km s−1

c0

)3/2

, (10.9)

where n0 is the number density of atomic nuclei. From this value of R0 we
can calculate the characteristic time t0 = R0/c0 ≈ 7 × 105 yr. Therefore,
ultracompact HII regions (with sizes of ∼ 0.1 pc and evolutionary times ∼
105 yr) are in a regime with a dimensionless radius r = R/R0 ∼ 0.1-1 and a
dimensionless time τ = t/t0 ∼ 0.1-1.

10.3.2 Numerical and analytic solutions

Equation (10.6) can be integrated numerically with the initial condition r(0) =
0 to obtain the radius R of the hot bubble as a function of time, and an
integration of equation (10.8) gives the radius Rn of the outer shock vs. t.
The results of such integrations are shown in Figure 10.2.

It is possible to find a series of approximate analytic solutions to equation
(10.6). For τ ≪ 1 the first term on the right hand side of equation (10.6)
dominates over the second term, and (neglecting the second term) one then
obtains the integral

r(τ) =

(

5

3

)2/5

τ 3/5 , (10.10)

which is the classical solution for an expanding, wind-driven bubble (see [13]).
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Figure 10.2: Radius R of the thick shell (thick, solid line) and Rn of the outer
shock (thin, solid line) resulting from a numerical integration of equations
(10.6) and (10.8). The radii are given in units of R0 (see equation 10.9) and
the time in units of R0/c0 (where c0 is the isothermal sound speed of the sur-
rounding, neutral environment). The long-dash line shows the inner analytic
solution (equation 10.10, valid for R ≪ R0) and the short-dash line the outer
analytic solution (equation 10.11, valid for R ≫ R0).

s

For τ ≫ 1, the two terms on the right hand side of equation (10.6) become
very large, reaching an approximate balance. Setting these two terms equal to
each other, one obtains the solution

r(τ) = τ 1/3 . (10.11)

It can be straightforwardly shown that this solution corresponds to a bubble
in pressure equilibrium with the surrounding environment, expanding quasi-
statically as more material is progressively injected by the stellar wind.

In Figure 10.2 we see that (as expected) the numerical integration of equation
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(10.6) gives a radius that approaches the low τ (equation 10.10) and high τ
(equation 10.11) solutions in the appropriate limits. It is possible, however, to
obtain approximate analytic solutions that reproduce the numerical solution
for all values of τ .

To find these approximate solutions, we first rewrite equation (10.6) in the
form:

dy

dx
=

3 (x2 − y2)

y2/3
, (10.12)

with x = τ 1/2 and y = r3/2. This equation can be straightforwardly solved to
obtain x as a function of dx/dy and y, and the resulting relation can then be
used to do successive iterations of the form:

xn+1 =

√

y2 +
y2/3

3(dxn/dy)
, (10.13)

to obtain increasingly more accurate approximations to the y(x) solution of
equation (10.12).

Let us call x0(y) the first approximation to the solution of (10.12). One pos-
sibility is to set x0(y) equal to the large τ solution (equation 10.11), which in
terms of the x, y variables takes the form:

x0(y) = y . (10.14)

Inserting this relation in equation (10.13), we obtain the first iteration:

x1(y) =

√

y2 +
1

3
y2/3 . (10.15)

Reinserting x1(y) in (10.13) we then obtain the second iteration:

x2(y) =

√

√

√

√

y2 +
3y
√

y2 + 1
3
y2/3

1 + 9y4/3
. (10.16)

It is possible to proceed with further iterations, but the resulting x(y) relations
are very extended.
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A second possibility is to use the small τ solution (equation 10.10) as the first
guess. The iterations then proceed as follows:

x0(y) =

(

3

5

)1/3

y5/9 , (10.17)

x1(y) =

√

y2 +

(

3

5

)2/3

y10/9 , (10.18)

x2(y) =

√

√

√

√

√y2 +
y2/3

√

y2 +
(

3
5

)2/3
y10/9

3
[

y + 1
3

(

5
3

)1/3
y1/9

] . (10.19)

The two “second iteration” solutions (equations 10.16 and 10.19) are shown
(together with the results from a numerical integration of equation 10.6) in
the top panel of Figure 10.3.

In order to evaluate the accuracy of our two “second iteration” solutions (equa-
tions 10.16 and 10.19), we first calculate the corresponding τ vs. r relations,
and then calculate the relative error in the radius

ǫ(τ) =

∣

∣

∣

∣

re(τ)− r2(τ)

re(τ)

∣

∣

∣

∣

, (10.20)

where re(τ) is the “exact” solution (obtained from an accurate numerical in-
tegration of equation 10.6) and r2(τ) is one of the two “second iteration”
approximate solutions (equations 10.16 and 10.19).

The two corresponding relative errors are plotted as a function of time in the
bottom panel of Figure 10.3. From this graph we see that the approximate
solution given by equation (10.16) has a maximum deviation from the exact
solution of ∼ 10%, and that the more complex approximate solution given by
equation (10.19) has a maximum deviation of ∼ 5%.

10.4 Thick HII region model

10.4.1 Derivation of the model equation

We now develop a similar model to the one of section 10.3.1, but relaxing the
condition that the photoionised region (region IIIa in Figure 10.1) is narrow.
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Figure 10.3: Top panel: radius of the hot bubble as a function of time obtained
from the “exact” (i.e., numerical) solution of equation 10.6 (solid line) and
the radii obtained from the two approximate analytic solutions (short dash:
equation 10.16; long dash: equation 10.19). Lower panel: relative deviations
(see equation 10.20) of equation 10.16 (short dash) and equation 10.19 (long
dash) from the “exact” solution.
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If we assume photoionisation equilibrium (correct for all HII regions, see [23]),
the outer radius RS of the photoionised region obeys the relation:

S∗ =
4π

3
n2
iαH

(

R3
S −R3

)

, (10.21)

where R is the radius of the hot bubble (region II of Figure 10.1), ni is the
ion number density of region IIIa (assumed to be homogeneous within the
region), S∗ is the rate of photoionising photons (emitted by the central star),
αH ≈ 2.6 × 10−13cm3s−1 is the case B hydrogen recombination coefficient at
104K.

The conditon of pressure equilibrium between the photoionised region and the
hot bubble is

P = mnic
2
i , (10.22)

where P is the pressure of the stellar wind bubble (see equation 10.3), ci (≈ 10
km s−1) is the isothermal sound speed of the photoionised gas and m is the
average mass per ion (= 1.3mH for a 90% H, 10% He gas, by number).

Also, the condition of pressure equilibrium between regions IIIa (the pho-
toionised region) and IIIb (the shocked, neutral region) implies that

P = ρ0v
2
n , (10.23)

where we have used the isothermal shock jump conditions (equation 10.4). As
described in section 10.3.1, vn is the velocity of the outer shock driven into the
undisturbed environment.

Finally, the “shock pushed by a piston” relation (equation 10.5) now takes the
form:

vn = vps + ṘS =
c20
vn

+ ṘS , (10.24)

where ṘS is the velocity of the outer edge of the photoionised region, and for
obtaining the second equality we have used equation (10.4).

Combining equations (10.3) and (10.21-10.24), we obtain a differential equation
for RS of the form:

1

c0

dRS

dt
=

√

P

ρ0c20
−
√

ρ0c20
P

, (10.25)
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where
P

ρ0c20
= λ

(

c0
Rf

t

)(

Rf

RS

)3

+

√

(

c0
Rf

λt

)2(
Rf

RS

)6

+

(

Rf

RS

)3

. (10.26)

The solutions of equations (10.25-10.26) depend on the value of the dimen-
sionless parameter

λ ≡ 1

2

(

R0

Rf

)2

, (10.27)

where R0 is given by equations (10.7,10.9) and

Rf =

(

3S∗

4πn2
0αH

)1/3(
ci
c0

)4/3

. (10.28)

Rf is the final radius obtained by a “wind-less” HII region which has reached
pressure equilibrium with a surrounding, homogeneous neutral environment
(see, e. g., the book of Dyson & Williams [13]). For parameters appropriate
for an ultracompact HII region powered by an O7 star, we have:

λ = 290

(

Ṁ

5× 10−7M⊙yr−1

)1/2
( vw
2500 km s−1

)2

(

107 cm−3

n0

)1/3(
1049 s−1

S∗

)2/3

(

1 km s−1

c0

)1/3(
10 km s−1

ci

)8/3

. (10.29)

It is straightforward to see that equations (10.25-10.26) have the following two
limits:

1. for λ≫ 1, these equations become equation (10.6) of section 10.3.1, i.e.,
the model for a wind-driven shell with a negligibly thin HII region,

2. for λ = 0, these equations are identical to the ones derived in chapter 9
for the expansion of an HII region in the absence of a stellar wind.
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Therefore, by spanning all positive values of the dimensionless parameter λ,
we have models ranging from a “wind-less” to a “wind dominated” expanding
HII region.

In the following section we present numerical solutions (of equations 10.25-
10.26) giving the radius RS of the expanding HII region as a function of time.
We also integrate equation (10.8) (setting r = RS/c0 in the right hand term)
to obtain the radius Rn of the outer shock driven into the undisturbed envi-
ronment, and combine equations (10.21-10.22) to obtain the radius of the hot
bubble (region II of Figure 10.1):

(

R

Rf

)3

=

(

RS

Rf

)3

−
(

ρ0c
2
0

P

)2

, (10.30)

where the second term on the right is given by equation (10.26).

10.4.2 Numerical solutions

In Figure 10.4, we show the numerical results obtained from numerical in-
tegrations of the “thick HII region” model (described in section 10.4.1) for
different values of the dimensionless parameter λ (see equations 10.27, 10.29).
The λ = 0 solution (top left panel) is identical to the “wind-less expanding
HII region” model of chapter 9. The λ = 100 solution is most similar to the
“thin HII region” model described in section 10.3 (i.e., the solution shown in
Figure 10.2).

As can be seen in Figure 10.4, for progressively larger values of λ, a larger,
inner hot wind bubble and a narrower HII region are obtained. In order to
evaluate the relative thickness of the HII region, we have computed the value
of

∆R

RS

=
RS −R

RS

, (10.31)

(where RS and R are the outer radii of the HII region and of the hot bubble,
respectively) as a function of t. The results are shown in Figure 10.5, in which
we see that for λ = 10, the HII region has become a shell with a thickness
of ∼ 1% of the radius of the ionised nebula. For the λ ∼ 100 value expected
for ultracompact HII regions driven by a main sequence O star (see equation
10.29), the photoionised gas is confined to an extremely narrow shell (see
Figure 10.5).
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Figure 10.4: Hot bubble radius (dashed line), outer radius of the HII region
(solid line) and radius of the shock driven into the surrounding environment
(dash-dot line) as a function of time, obtained from numerical solutions of the
“thick HII region model” of section 10.4. The six panels are labeled with the
values of the dimensionless parameter λ (see equations 10.27, 10.29) used for
each solution.

10.5 Summary

In this chapter, we have applied the “thick shell” formalism to the case of a
source producing both a photoionising radiation field and a stellar wind. For
the case in which the HII region is thin (compared to the width of the swept-
up ambient medium shell), the problem can be solved analytically with an
iterative method. This method gives solutions which approximate the exact
solution with accuracies of better than ∼ 5% (see section 10.3). Our new
solution to the wind-driven bubble expansion problem has a transition from a
R ∝ t3/5 law (i.e., the “classical” solution, see [13]) for R ≪ R0 (see equation
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Figure 10.5: Relative width of the HII region (see equation 10.31) as a function
of time obtained for different values of the dimensionless parameter λ (see
equation 10.27).

10.9) to a R ∝ t1/3 law for R ≫ R0. Ultracompact HII regions lie close to the
transition between these two regimes.

The problem in which the HII region is not thin leads to a more complex
differential equation, which we have integrated numerically. Different solutions
are found for different values of the dimensionless parameter λ ≡ R0/(2Rf )
(where R0 is given by equation 10.9 and Rf is the final, pressure equilibrium
radius of an HII region from a wind-less source). For increasing values of λ, we
obtain solutions ranging from the wind-less case (λ = 0) to solutions in which
the HII region becomes a very thin shell (approaching the “thin HII region”
analytic solution.

The transition to the thin HII region regime (for increasing λ values) is shown
in Figures 10.4 and 10.5. Interestingly, for the nominal parameters that we
have chosen for an ultracompact HII region, we obtain λ ≈ 300 (see equation
10.29), so that they are clearly in the “thin HII region” regime.
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Figure 10.6: Outer radius of the HII region (top panel) and expansion velocity
(lower panel) for an ultracompact HII region (of isothermal sound speed ci =
10 km s−1) driven by a source with S∗ = 1049s−1 into a uniform environment
of density n0 = 107cm−3 (and isothermal sound speed c0 = 1 km s−1). Three
solutions are shown, corresponding to stellar winds such that the dimensionless
parameter λ (see equations 10.27, 10.29) has values of 290 (short dash line),
10 (long dash line) and 0 (solid line).

In order to illustrate the effect of a stellar wind on the characteristics of an
HII region, in Figure 10.6 we show the HII region radius RS and the expansion
velocity (dRS/dt) obtained for λ = 0 (i.e., a wind-less HII region), λ = 290
(the value obtained for our chosen ultracompact HII region parameters, see
equation 10.29) and for λ = 10 (an arbitrary, intermediate λ value). From this
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figure we see that while for λ = 0 the expansion velocity falls below ≈ 1 km s−1

in ∼ 500 yr, for λ = 10 the expansion velocity remains above ≈ 1 km s−1 for an
evolutionary time ∼ 1.5× 105 yr. For λ = 290, the expansion velocity remains
above ∼ 3 km s−1 for ∼ 2× 104 yr and above ∼ 2 km s−1 for ∼ 1.5× 105 yr.

Interferometric observations show that some ultracompact HII regions have
a “thick shell” morphology, with shell widths of ∼ 10-20% of the nebular
radius (see [10]). Comparing this result with our predictions of the thickness
of the HII region, we would conclude that these “thick shell” objects have a
dimensionless parameter λ < 1 (see Figure 10.5).

However, from equation (10.29) and the Table of main sequence O/B stellar
parameters of Sternberg et al. [33], we see that HII regions (expanding into
a n0 = 107cm−3, uniform environment) have λ = 150 → 670, the lower limit
corresponding to a B0 star, and the upper limit to an O3 star. If we lower
the environmental density to n0 = 104cm−3, we would obtain a λ = 15 → 70
range (see equation 10.29), still an order of magnitude higher than the λ values
necessary for producing a “thick HII shell” morphology (see above and Figure
10.5).

Interestingly, the more recent paper of Marcolino et al. [17] calculates mass
loss rates for O8 and O9 main sequence which are two orders of magnitude
below previously obtained rates (such as the ones of Sternberg et al. [33], given
in Table 3.1, see above). These new mass loss rates would imply that λ ∼ 1
for late OV stars.

Clearly, models of winds from late O (O8, O9) stars and also from B-type
stars are still highly uncertain, and will probably evolve considerably in the
future. Actually, observations of wind-driven HII regions might prove to be
useful for providing constraints on the properties of these winds, since there
are few direct observations of their characteristics.
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Chapter 11

Supernova remnants

11.1 Introduction

The evolution of supernovae (SN) explosions typically has three distinct phases:
an initial “ejectum dominated” phase, which is followed by the Taylor-Sedov
phase (in which the expansion has lost the memory of the initial explosion),
and by a later, radiative phase (in which the outer shock becomes radiative).

The hot material ejected by the supernova (with an energy typically of 1049 →
1050 erg) initially expands freely, at a velocity which depends on the details of
the explosion itself. As the material expands, it incorporates more and more
ambient material. When this latter component starts to dominate the dynam-
ics of the expansion, the explosion enters the so-called “Taylor-Sedov”, energy
conserving phase. At later stages of the evolution of a supernova remnant the
outer shock becomes radiative, and the expansion enters a final, “momentum
conserving” regime.

In this chapter, we first describe the problem of a non-radiative blast wave
generated by a point explosion. This problem was studied theoretically by
Taylor and by Sedov (who found the full, self-similar analytic solution). The
self-similar solution explored by these authors applies to a blast wave in the
“strong shock” regime (in which the shock wave moves outwards at a highly
supersonic velocity).

A simplified model, in which it is assumed that the swept-up environmental
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material is piled up into a “thin shell” (pushed out by an inner, low mass, hot
bubble), is described in detail in the book of Zel’dovich & Raizer [35], and
leads to an expansion law which is very similar to the one of Sedov. In this
“thin shell model”, it is also assumed that the expansion drives a strong shock.

In the following, we present a more general derivation of this “thin shell model”,
allowing the outer shock to have a transition from a strong shock (in the early
evolution of the expansion) to a weak shock regime (in the later evolution).

11.2 Dimensional arguments

From a simple, dimensional argument it is possible to derive the general form
of the expansion of a spherical blast wave. If we have an explosion of energy
E in a uniform medium of density ρ0, driving a strong, spherical blast wave
of radius R(t), it is clear that the parameters E, ρ0, R and t can be combined
into a single, dimensionless parameter:

Π =
Et2

ρ0R5
. (11.1)

From “Buckingham’s Π theorem”, because we have a single, independent di-
mensionless number, this dimensionless number has to be constant. Therefore,
the radius of the blast wave as a function of time is:

R = C

(

E

ρ

)1/5

t2/5 , (11.2)

where C is an unknown constant (in principle of order 1). If the shock wave
becomes weak, this solution is no longer valid, since the sound speed c0 (or,
alternatively, the pressure P0) of the environment also plays a role in the
solution, resulting in the creation of a second dimensionless parameter.

In the following, we present a model from which one recovers equation (11.2,
but with known C) for the strong shock limit, and which also describes the
regime in which the blast wave is no longer strong.
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11.3 The model equation

In order to derive an analytic model for an explosion in an environment with
a non-negligible pressure, we use the “expanding shell” model described in the
book of Zel’dovich & Raizer [35] and, in the astrophysical context, in the book
of Dyson & Williams [13].

In this model, one assumes that a hot, low mass bubble pushes out the sur-
rounding, uniform environment into an outwardly moving shell. The initial
energy E of the explosion is divided between thermal energy of the hot bubble
and kinetic energy of the shell, so that at any time in the expansion we have:

E =
PV

γ − 1
+

1

2
Msv

2
s , (11.3)

where γ is the specific heat ratio, P and V are the pressure and volume (re-
spectively) of the bubble (at an arbitrary time) and Ms and vs are the mass
and velocity (respectively) of the swept-up shell.

Following the classical derivation, we use the estimates

P ≈ 2

γ + 1
ρ0v

2
c , (11.4)

vc ≈
γ + 1

2
vs , (11.5)

Ms ≈ V ρ0 , (11.6)

where R is the outer radius of the hot bubble (so that the volume of the bubble
is V = 4πR3/3), MS is the shell mass, vs = Ṙ the shell velocity, γ the specific
heat ratio and ρ0 is the density of the uniform, undisturbed environment. In
principle the specific heat ratio γ for the swept-up environment (equations
11.4-11.5) could be different from the specific heat ratio of the gas within the
hot bubble (equation 11.3). Equation (11.4) is the strong shock jump relation,
and equation (11.5) gives the velocity vc of a strong shock pushed out by a
plane piston of velocity vs. Equation (11.6) gives the shell mass assuming that
the shell is thin, and that it incorporates all of the environmental material
swept up by the expansion of the hot bubble.

Combining equations (11.3-11.6), we obtain an energy conservation equation
of the form:

E = ΓR3P , (11.7)
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with

Γ ≡ 8π

3

γ

γ2 − 1
, (11.8)

for a bubble of uniform pressure P and radius R. Equation (11.7) indicates
that a constant fraction (γ + 1)/2γ of the initial energy E remains as thermal
energy of the hot bubble at all evolutionary times (also, a constant fraction
(γ − 1)/2γ of this energy is in the form of shell kinetic energy, see equation
11.3).

We will now assume that this energy distribution also holds for the regime in
which the outer shock is no longer strong. This is of course not correct, but as
Γ (see equation 11.8) appears only to a power of 1/3 in the final solution, the
assumption of a constant value for Γ is not likely to introduce large errors.

We now consider the general (i.e., no longer “strong”) shock jump relations:

P1 =
2

γ + 1
ρ0v

2
c −

γ − 1

γ + 1
P0 , (11.9)

v1 =
γ − 1

γ + 1
vc +

2

γ + 1

c20
vc
, (11.10)

where c0 is the adiabatic sound speed and P0 (= ρ0c
2
0/γ) the pressure of the

undisturbed environment, P1 is the post-shock pressure and v1 the post-shock
velocity (in the shock reference system).

If we assume that the hot bubble acts like a plane piston (i.e., that the shell is
not very thick), the relation between the shell velocity vs (= Ṙ, where R is the
radius of the hot bubble, see above) and the shock velocity vc is: vc = vs + v1.
Combining this relation with equation (11.10), we obtain the “piston relation”:

Ṙ

c0
=

2

γ + 1

(

vc
c0

− c0
vc

)

. (11.11)

If we now assume that the post-shock pressure P1 is equal to the pressure P
of the hot bubble, combining equations (11.7) and (11.9) we obtain:

(

vc
c0

)2

=
1

c0

2

Ṙ2
c =

1

2γ

[

(γ + 1)

(

Rf

R

)3

+ γ − 1

]

, (11.12)
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with

Rf ≡
(

γE

Γρ0c20

)1/3

. (11.13)

In equation (11.12), Rc is the (time-dependent) radius of the outer shock. It
is clear that if we set R = Rf (where R is the radius of the hot bubble, see
above), from equation (11.12) we obtain vc = c0, and inserting this result in
(11.11) we obtain Ṙ = 0. This is the regime of large evolutionary times, in
which the hot bubble attains a final radius Rf , and the (weak) outer shock
travels sonically into the surrounding environment.

11.4 Solutions for the bubble radius

Equations (11.11) and (11.12) can be straightforwardly combined to obtain a
differential equation for the radius R of the hot bubble:

1

c0

dR

dt
=

2

γ + 1

[

√

γ + 1

2γ

(

Rf

R

)3

+
γ − 1

2γ

− 1
√

γ+1
2γ

(

Rf

R

)3

+ γ−1
2γ

]

. (11.14)

Using the boundary condition R(t = 0) = 0, the solution to this equation is:

c0γ
1/3

Rf

(

2

γ + 1

)4/3

t =

2

5
r5/2F1

[

5

6
,−1

2
, 1,

11

6
,−ar3, (1− a)r3

]

, (11.15)

where F1 is the Appell hypergeometric function of two variables,

r ≡
(

2γ

γ + 1

)1/3
R

Rf

, (11.16)

with Rf given by equation (11.13), and

a =
γ − 1

2γ
. (11.17)
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For the γ = 1 case, equation (11.14) has the simpler integral:

c0
Rf

t1 =
1

6

{

2
√
3 tan−1

( √
3r

r − 1

)

+ ln

[

(
√
r + 1)2(1 +

√
r + r)

(
√
r − 1)2(1−√

r + r)

]

}

, (11.18)

with r given by equation (11.16).

The radius R of the hot bubble as a function of time t (actually computed as
t vs. R from equations 11.15, 11.18) is shown for γ = 5/3, 7/5 and 1 in Figure
11.1. It is clear from this figure that (if plotted in the correct dimensionless
form) the solutions for the different values of γ differ by at most a few percent.
Therefore, for an arbitrary γ (within the 5/3 → 1 range shown in Figure 11.1),
it is a good approximation to compute the time-evolution of the hot bubble
through:

t ≈ γ + 1

2
t1(r) , (11.19)

with r given as a function of the dimensional radius R of the bubble by equation
(11.16), and t1(r) obtained through equation (11.18). With this approxima-
tion, the more complex evaluation of the Appel hypergeometric function of
two variables (equation 11.15) is avoided.

We end by pointing out that if one takes the R ≪ Rf limit in equation (11.14),
the resulting differential equation can be straightforwardly integrated to ob-
tain:

RTS

Rf

=

[

25

2γ(γ + 1)

]1/5(
c0t

Rf

)2/5

, (11.20)

which corresponds to the “strong shock” Taylor-Sedov solution in which the
hot bubble expands as time to the 2/5 power. It can be shown that equations
(11.15) and (11.18) coincide with equation (11.20) for R ≪ Rf .
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Figure 11.1: Radius R of the hot bubble (in units of Rf , see equation (11.13)
as a function of time t [in units of (γ + 1)Rf/(2c0)] for three different values
of the specific heat ratio γ. The curves corresponding to γ = 5/3 and γ = 1
are labeled, and the middle curve corresponds to γ = 7/5.
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11.5 Solution for the shock radius

In order to find the radius Rc of the outer shock as a function of time, we
combine equations (11.11) and (11.12) to obtain:

dRc

dR
=

1 + α(R/Rf )
3

(1− α) [1− (R/Rf )3]
, (11.21)

where R is the radius of the hot bubble (given as a function of time by equations
11.15-11.19), Rf is given by equation (11.13) and

α =
γ − 1

γ + 1
. (11.22)

This equation can be directly integrated to obtain:

Rc

Rf

= −(γ − 1)

2

(

R

Rf

)

+
γ√
3
tan−1

( √
3R/Rf

2 +R/Rf

)

+
γ

6
ln

[

1 +R/Rf + (R/Rf )
2

(1−R/Rf )2

]

. (11.23)

We have taken the γ = 7/5, 5/3 and 1 R(t) solutions of equation (11.15) shown
in Figure 11.1, and used equation (11.23) to compute the corresponding Rc(t)
shock radii. The obtained results are shown in Figure 11.2.

Finally, we note that in the strong shock, R ≪ Rf limit, both equations (11.21)
and (11.23) give:

Rc =
(γ + 1)

2
R . (11.24)

Therefore, using equation (11.20) we recover the Taylor-Sedov solution in
which the shock wave radius grows as t2/5.

Figure 11.3 shows the pressure and density stratifications in a time-radius
plane obtained from a numerical integration of the spherically symmetric gas-
dynamic equations. Also shown are the analytic solutions obtained for the
shock wave (black, solid line in the top frame) and for the outer radius of
the hot bubble (black, dashed line in the bottom frame). Finally, the strong
shock solutions (white solid and dashed lines) of equations (11.20) and (11.24)
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Figure 11.2: Radius Rc of the outer shock (in units of Rf , see equation (11.13)
as a function of time t [in units of (γ + 1)Rf/(2c0)] for three different values
of the specific heat ratio γ. The curves corresponding to γ = 5/3 and γ = 1
are labeled, and the middle curve corresponds to γ = 7/5.
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Figure 11.3: Pressure (top) and temperature (bottom frame) stratifications in
the (t, R)-plane obtained from the numerical simulation described in the text.
The dimensionless pressure and temperature are plotted with the logarithmic
scales given by the bars on the right. The positions of the outer shock (black,
solid line in the top frame) and the outer radius of the hot bubble (black,
dashed line in the bottom frame) predicted from the strong/weak shock an-
alytic model are also shown. Finally, the white curves show the predictions
from the “strong shock’ solutions (solid line → outer shock; dashed line →
outer boundary of hot bubble).
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are also included. From the top frame of Figure 11.3, it is clear that while
the strong shock solution (white, solid line) shows strong deviations from the
numerical simulation for t > Rf/c0, the new “strong/weak shock” solution
(equations 11.15 and 11.23) agrees to within ∼ 5% with the simulated shock
position for all of the displayed times.

It is less clear what is the feature in the numerical simulation that corresponds
to the outer radius of the “hot bubble”. In the bottom frame, we see that
the radius R of the hot bubble (obtained from equation 11.15) encloses a hot
region with a strongly stratified temperature. For larger radii, the temperature
has values similar to the temperature of the undisturbed environment (except
for a narrow, hotter region just behind the outer shock).

The radius of the “hot bubble” of the analytic model does not correspond to
the position of the outer edge of the initial bubble imposed in the numerical
simulation. At a time t = 1.5 c0/Rf , the initial bubble has expanded to a
radius of ≈ 0.17Rf (seen as the saturated, high temperature region in the
bottom frame of Figure 11.3). The “hot bubble” of the analytic model has
approximately 5 times this radius, and its mass is dominated by environmental
material heated by the blast wave at early evolutionary times.

11.6 Astrophysical application of the weak shock

solution

This chapter presents an extension of the analytic “hot bubble/swept-up shell”
model for non-radiative, spherical blast waves described in the book of Zel’dovich
& Raizer [35] to the case in which the outer shock has a strong/weak shock
transition. The resulting model has a full analytic solution, which gives the
radii of the hot bubble and of the outer shock as a function of time.

The analytic model has an initial behaviour which is similar to the “strong
shock”, Taylor-Sedov solution. For radii of the hot bubble R ∼ Rf and times
t ∼ Rf/c0 (where Rf is given by equation 11.13), the analytic solution has a
transition to a “weak shock” regime, in which the hot bubble stops growing (the
bubble remaining in approximate pressure equilibrium with the undisturbed
environment) and the outer shock velocity approaches c0 (the environmental
sound speed).
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While the application of the present model to “ground based” explosions is
evident, it also has astrophysical applications. Tang & Wang [34] showed that
SN explosions within pre-existing hot bubbles can reach the “weak shock”
regime. In the context of our analytic model, this can be seen by setting
n0 ∼ 1 cm−3, c0 ∼ 1000 km s−1 (the environmental number density and
sound speed, respectively) and E ∼ 1050 erg in equation (11.13), to obtain
Rf ∼ 2.3 pc. As can be seen from Figure 11.1, the bubble reaches a radius Rf

at a time tf ∼ Rf/c0 ∼ 2200 yr. At a time ∼ tf , the outer shock also becomes
weak (see Figure 11.1).

Therefore, if we have a pre-existing, hot bubble of radius R0 > Rf , the ex-
plosion will generate an inner, higher temperature core (of radius ∼ Rf ), and
the outer shock will perturb only weakly the remaining, outer region of the
initial bubble. This hot core will eventually be dissipated as a result of thermal
conduction. If the initial hot bubble is stratified, the hot core generated by
the SN explosion would migrate, “floating” towards the direction of maximum
(negative) pressure gradient. This discussion of SN explosions in pre-existing
hot bubbles does not differ substantially from the one of Tang & Wang [34].

A second possible astrophysical application of our model is for SN explosions
within molecular clouds. This situation has been explored theoretically by
Chevalier [11]. In order to evaluate whether a SN explosion will reach the weak
shock regime within a molecular cloud, we set n0 ∼ 106 cm−3, c0 ∼ 1 km s−1

and E ∼ 1050 erg in equation (11.13), obtaining Rf ∼ 2.3 pc. The evolution
of the remnant to the weak shock regime will take place in tf ∼ Rf/c0 ∼
2.2 × 106 yr. Therefore, if we have a SN explosion within a molecular cloud
of radius larger than ∼ 2.3 pc, it will contain the hot bubble generated by the
explosion. This contained bubble will generate convective instabilities through
which it will eventually mix with the outer regions of the molecular cloud.

We should note that though the present model is strictly non-radiative, it is
still possible to apply it to the case in which the outer shock is highly radiative.
This can be done by considering γ = 5/3 for the non-radiative, hot bubble (i.e.,
setting γ = 5/3 in equation 11.8) and γ = 1 in the equations resulting from
the shock relations (i.e., in equations 11.15-11.18 and 11.21-11.22). In this
way, the model can be applied to the case of a SN within a molecular cloud,
in which the transition from a non-radiative to a radiative outer shock takes
place in the early stages of the evolution of the remnant.
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However (at least in its present form), the model cannot be applied to a “nor-
mal” SN remnant, in which substantial parts of the evolution are both in the
non-radiative and radiative outer shock regimes.

11.7 The radiative phase

In a normal SN remnant, the outer shock reaches velocities of ∼ 300 km s−1

while still being strong. At lower shock velocities, the post-shock cooling time
and cooling distance rapidly become very short (compared to the evolutionary
timescale of the remnant), so that the outer shell becomes radiative.

From then on, the outer shell coasts along, conserving momentum, and slowing
down as this momentum is shared with newly swept-up environmental mate-
rial. The simplest model for the motion of such a shell is as follows (see the
book of Dyson & Williams 1980 [13]).

Let us consider that at t = t0 we have a shell of radius R0, velocity v0, mass
M0 and momentum Π0 =M0v0. At all times, the mass of the shell is:

M =
4π

3
R3ρ0 . (11.25)

For a momentum conserving shell (i.e., with Π = Mv = Π0 for all times), we
then have:

dR

dt
=

Π0

M
=

(

R0

R

)3

v0 , (11.26)

which can be integrated to obtain:

R(t) = R0

[

1 +
4v0(t− t0)

R0

]1/4

. (11.27)

Therefore, at large evolutionary times the shell follows aR ∝ t1/4 (→ v ∝ t−3/4)
law, with a faster slowing down than the Taylor-Sedov phase.

Clearly, the model discussed here could be elaborated. The two clear improve-
ments are:

1. including the force due to the inner, hot bubble,
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2. including the strong/weak shock transition in the outer shock.

While the first of these items has already been explored in the literature (see
the original paper of McKee & Ostriker [18]) as far as we are aware the second
item has not yet been attempted.
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Chapter 12

Gravitational collapse

12.1 General considerations

In the “nebular hypothesis” proposed by Laplace towards the end of the XVII-
Ith century, the solar system is supposed to condense out of a diffuse, rotating
cloud of gas. This idea is preserved in more modern astrophysics for the for-
mation of stars in general, as there is now very substantial evidence of the
existence of recently formed stars associated with dense regions of the ISM.

Let us describe a semi-qualitative model for the collapse of a gas cloud in
the ISM due to its own self-gravity. If one has a spherical, self-gravitating
cloud with an outer pressure P , the balance between the pressure force and
the gravitational force of the cloud can be written in an approximate way as:

4πR2P ≈ GM2

R2
, (12.1)

where R is a characteristic radius of the cloud, P the external pressure, M =
4πρR3/3 the mass of the cloud (with ρ representing an average density) and
G the gravitational constant.

We now assume that the pressure and density follow an adiabat:

P = P0

(

ρ

ρ0

)γ

, (12.2)

where γ is the specific heat ratio. Equations (12.1) and (12.2) can be combined

183



to obtain:

MJ = ξ

(

P0

Gργ0

)1/(2−γ)

R(4−3γ)/(2−γ) . (12.3)

In this equation, ξ is a constant of order unity (a calculation of its value
involves a considerably more complex model, see the following section). MJ

is the so-called “Jeans mass”, for which a cloud of external radius R is in the
hydrostatic equilibrium resulting from the balance between the pressure force
and the self-gravity of the cloud.

Clearly, there are two possible behaviours, depending on whether the exponent
α = (4− 3γ)/(2− γ) is positive or negative:

a. α > 0 (γ < 4/3 or γ > 2): if we compress a cloud in initial hydro-
static equilibrium (i.e., with mass M = MJ at the initial cloud radius),
the Jeans mass of the compressed configuration is smaller than the ini-
tial mass of the cloud. Therefore, the cloud has an imbalance between
the (now insufficient) pressure force and the self-gravity, and the cloud
continues to collapse,

b. α < 0 (4/3 < γ < 2): a compression of an initially hydrostatic cloud
results in an increase of the Jeans mass. Therefore, the mass of the
compressed cloud will be lower than the Jeans mass, so that the cloud
will re-expand under the effect of the positive imbalance between the
internal pressure and the self-gravity.

For a self-gravitating molecular cloud core, the balance between the heating (by
absorption of UV and X-ray photons by dust) and the cooling (by emission
of lines of CO and other molecules) results in an approximately isothermal
behaviour. Therefore, a relation P = ρc20 (where c0 is the approximately
constant isothermal sound speed) is satisfied, so that γ ≈ 1 (see equation
12.2). Then, the Jeans mass is given by:

MJ =
ξc20R

G
, (12.4)

and the cloud is in the unstable, α > 0 regime described above.

This derivation is only an approximation to the real problem, since it is based
only on an approximate pressure/gravity balance condition (see equation 12.1).
A more thorough derivation of the stability condition for a spherical, isothermal
cloud core is derived in the following sections.
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12.2 The isothermal, self-gravitating sphere

12.2.1 The Lane-Emden equation

A self-gravitating, hydrostatic cloud has a radially stratified density. The bal-
ance between the pressure gradient and the gravitational force can be written
as:

dP

dR
= −ρGMR

R2
, (12.5)

where P and ρ are the gas pressure and density (respectively), R is the spherical
radius and

MR = 4π

∫ R

0

ρR′2dR′ , (12.6)

is the mass within a radius R.

Now, for the isothermal case, we have P = ρc20 (where c0 is the isothermal
sound speed). Grouping terms and taking a derivative with respect to R of
equation (12.5) one obtains the so-called “isothermal, Lane-Emden equation”:

d

dR

(

R2d ln ρ

dR

)

= −4πG

c20
ρR2 . (12.7)

An exact solution to this equation is the “singular, isothermal sphere”:

ρS(R) =
c20

2πG

1

R2
. (12.8)

As we will see in the following section, there is also a more general, non-singular
solution of the Lane-Emden equation.

12.2.2 The non-singular solution

The non-singular isothermal sphere (which also satisfies equation 12.7) does
not have a full, analytic solution. It is possible to propose a Taylor series of
the solution, and substituting it into (12.7) to obtain the coefficients of this
series by matching terms with the same power of R. To second order in R,
one obtains the well known solution:

ρ2(R) = ρc

[

1−
(

R

Rc

)2
]

, (12.9)

185



where ρc is the central density and

Rc ≡
√

3c20
2πGρc

(12.10)

is the so-called “core radius” of the non-singular sphere.

If one defines dimensionless variables r = R/Rc and ρ
′ = ρ/ρc, the isothermal,

Lane-Emden equation becomes:

d

dr

(

r2
d ln ρ′

dr

)

= −6ρ′r2 . (12.11)

The dimensionless, singular solution then is:

ρ′S(r) =
1

3r2
, (12.12)

and the second order, r ≪ 1 solution is:

ρ′2(r) = 1− r2 . (12.13)

It is a well-known result that the non-singular solution (obtained, e.g., by
integrating numerically equation 12.11 with the boundary conditions ρ′ = 1
and dρ′/dr = 0 at r = 0) asymptotically approaches the singular solution
(equation 12.12) for r ≫ 1. A certain amount of effort has been made to design
interpolation formulae that match the Taylor series expansion (equation 12.13)
for small r and the singular solution (equation 12.12) for large r, and reproduce
the non-singular solution (for all r) with a certain degree of accuracy.

The simplest of the proposed interpolations is:

ρ′a(r) =
1

1 + r2
. (12.14)

This interpolation has the virtue of coinciding (to second order in r) with the
Taylor series solution (equation 12.13), and having a ρ ∝ r−2 dependence for
r ≫ 1. However, the proportionality constant (= 1) of the large r dependence
of equation (12.14) is larger by a factor 3 than the constant of the singular
solution (see equation 12.12).

In order to have a better analytic approximation to the non-singular isothermal
sphere, it is necessary to divide the solution into a “far field” and a “near field”
regime. This is described in the following two sections.
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12.2.3 The R ≫ Rc, “far field” solution

For R ≫ Rc (i.e., for r ≫ 1), the non-singular solution of the isothermal,
Lane-Emden equation (equation 12.11) asymptotically approaches the singu-
lar solution (equation 12.12). In order to study the characteristics of this
approach, we propose a function q(r) such that:

ρ′(r) = [1 + q(r)] ρ′s(r) , (12.15)

where ρ′s(r) = 1/(3r2) (see equation 12.12). Substituting equation (12.15) into
equation (12.11) we obtain a differential equation for q of the form:

2q +
2rq′

1 + q
− r2q′2

(1 + q)2
+

r2q′′

1 + q
= 0 , (12.16)

where q′ = dq/dr and q′′ = d2q/dr2. We now assume that q, q′, q′′ ≪ 1, and
therefore only keep in equation (12.16) the terms with linear dependencies on
these functions. We then obtain:

2q + 2rq′ + r2q′′ = 0 . (12.17)

Proposing a solution of the form q = Crp (with constant C and p) and sub-
stituting into (12.17), one straigthforwardly obtains that p = 1/2 + i

√
7/2.

Therefore, the real (as opposed to complex) solution has the form:

ql(r) =
A

r1/2
cos

(√
7

2
ln r + φ

)

, (12.18)

in which A and φ are the two integration constants. This solution is derived
in a more elaborate way in the book of Chandrasekhar (1967, first published
in 1939).

From equation (12.18), we see that indeed ql(r) → 0 (in other words, ρ′ →
ρ′s, see equation 12.15) for r ≫ 1, but that it changes sign periodically as
a function of ln r. Therefore, the non-singular solution crosses the singular
solution repeatedly, with intervening excursions of decreasing amplitude for
larger values of r (see equation 12.18).

We now take the “exact” solution ρex(r) of the isothermal, Lane-Emden equa-
tion (obtained by integrating equation 12.11 with a second-order, variable step
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Table 12.1: Coefficients for interpolation (12.21)

j Aj a2j
1 24.941621 9.229485
2 −22.890004 13.490639
3 −0.602714 106.575159
4 0.551098 5172.242487

method), and use it to compute the corresponding deviation qex from the sin-
gular solution:

qex(r) =
ρex(r)

ρs(r)
− 1 , (12.19)

as follows from equation (12.15). We then obtain the values A0 = 0.735 and
φ0 = 5.396 from a least squares fit of ql(r) (equation 12.18) to the exact solution
(equation 12.19) in the r = 10 → 104 radial range.

Finally, from equation (12.15) we obtain:

ρ(r) = ρs(r)fnear(r) ; fnear(r) = 1 + ql(r) , (12.20)

with ql(r) given by equation (12.18).

12.2.4 The R ∼ Rc, “near field” solution

For R ∼ Rc we take the interpolation formula proposed by Hunter ([16]):

ρH(r) =
4
∑

j=1

Aj

a2j + 6r2
, (12.21)

where the Aj and a2j coefficients are given in Table 12.1. This interpolation
has a good behaviour out to log10 r ≈ 1.5.

The natural choice for a switch between the near and far field solutions is at a
dimensionless radius r1 = 27.643, at which the “near field” and the “far field”
approximations coincide.
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12.2.5 The full solution

The full density stratification can then be written in the form:

ρ(R) =
c20

2πGR2
f

(

R

Rc

)

, (12.22)

where R is the spherical radius, G the gravitational constant, c0 the isothermal
sound speed, Rc is the core radius (see equation 12.10) and ρc the central
density.

The f(r) function (with r = R/Rc) is approximated by a “near” and a “far
field” interpolation (fnear and ffar, respectively), with a switch at a radius
r1 = 27.643:

f(r) = fnear(r) , r ≤ r1 ; f(r) = ffar(r) , r > r1 , (12.23)

with

fnear(r) =
4
∑

j=1

Aj

2 + a2j/(3r
2)
, (12.24)

and

ffar(r) = 1 +
A

r1/2
cos

(√
7

2
ln r + φ

)

, (12.25)

where A = 0.735, φ = 5.396 and the values of Aj and aj given in Table 12.1.

With these forms for fnear(r) and ffar(r) it is straightforward to calculate the
derivative f ′(r) of f with respect to r:

f ′(r) = f ′
near(r) , r ≤ r1 ;

f ′(r) = f ′
far(r) , r > r1 , (12.26)

with

f ′
near(r) =

2

3

4
∑

j=1

a2jAjr

(2r2 + a2j/3)
2
, (12.27)

and

f ′
far(r) = − A

2r3/2

[

√
7 sin

(√
7

2
ln r + φ

)

+ cos

(√
7

2
ln r + φ

)]

. (12.28)
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We can also calculate the integral

F (r) =

∫ r

0

f(r′)dr′ (12.29)

as
F (r) = I1(r) , r ≤ r1 ;

F (r) = I1(r1) + I2(r)− I2(r1) , r > r1 , (12.30)

where

I1(r) =
4
∑

j=1

Aj

2

[

r − aj√
6
tan−1

(√
6r

aj

)]

, (12.31)

I2(r) = r +
Ar1/2

4

[

√
7 sin

(√
7

2
ln r + φ

)

+ cos

(√
7

2
ln r + φ

)]

. (12.32)

12.2.6 General properties of the isothermal sphere

Let us consider a self-gravitating sphere of isothermal sound speed c0 embedded
in an environment of pressure ρec

2
0 (so that the outer density of the sphere has

a value ρe). From equation (12.22) we can then obtain the outer radius Re of
the sphere:

Re =

√

c20
2πGρe

f(re) , (12.33)

and also the total mass:

M = 4π

∫ Re

0

ρ(R′)R′2dR′ =
2c20Rc

G
F

(

Re

Rc

)

, (12.34)

Combining equations (12.33), (12.34) and (12.10) we then obtain the total
mass

M =
2c30

√

2πρeG3

f 1/2(re)F (re)

re
, (12.35)

as a function of the ratio re = Re/Rc between the external radius and the core
radius of the sphere.

The outer radius and total mass of the sphere (equations 12.33 and 12.35) are
plotted as a function of Re/Rc in Figure 12.1. In this figure, we see that for a
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Figure 12.1: Dimensionless mass (top) and outer radius (bottom) of a non-
singular isothermal sphere as a function of the outer to core radius ratio Re/Rc

(solid lines). The long dash, horizontal lines represent the values obtained for
the singular sphere. The short dash lines represent a M ∝ (Re/Rc)

3 (top
graph) and a Re ∝ Re/Rc dependence (bottom).

sphere with weak gravity (i.e., with Rc ≫ Re) we naturally obtain Re ∝ Re/Rc

and M ∝ (Re/Rc)
3, as would be expected for a sphere with an approximately

uniform density (with a value ≈ ρe).

From Figure 12.1 we also see that for Re/Rc ≫ 1, the outer radius and the
total mass reach asymptotic values Ra and Ma (respectively), with values:

Ra =

√

c20
2πGρe

, (12.36)

Ma =
2c30

√

2πρeG3
, (12.37)
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corresponding to the radius and mass of the singular isothermal sphere solution
(equation 12.8). These values can be obtained from equations (12.33) and
(12.35) by setting f(re) = 1 and F (re) = re.

12.3 Stability of the isothermal sphere

12.3.1 Bonnor’s stability criterion

Finally, we are at the point of being able to determine the stability properties
of an isothermal, self-gravitating sphere. Bonnor [5] suggested the following
stability criterion for radial perturbations. If we have a sphere of total mass
M and external radius Re, it is gravitationally stable provided that

(

dPe

dRe

)

M=const.

= c20

(

dρe
dRe

)

M=const.

< 0 , (12.38)

where Pe is the outer pressure of the sphere and ρe its outer density (obtained
by setting R = Re in equation 12.22). In other words, the self-gravitating
sphere is stable if it can react to an increase in the pressure of the surrounding
environment by generating a new hydrostatic structure with a smaller external
radius. With the approximate, analytic non-singular solution described above,
we evaluate this criterion in the following way.

First, differentiating equation (12.35) we obtain:

G

2c20
dM =

[

F (re) +Rc
dF

dre
(re)

∂re
∂Rc

]

dRc +Rc
dF

dre
(re)

∂re
∂Re

dRe , (12.39)

where re = Re/Rc. In this equation, ∂F/∂re = f(re), ∂re/∂Rc = −Re/R
2
c and

∂re/∂Re = 1/Rc. Setting dM = 0 in equation (12.39) we then have:

dRc

dRe

=
1

re − F (re)/f(re)
, (12.40)

for a variation at constant M .

We now evaluate equation (12.22) at the external radius Re and differentiate
to obtain:

2πG

c20

dρ

dRe

=
1

R2
e

[

− 2

Re

f(re) +
df

dre

dre
dRe

]

, (12.41)
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where:
dre
dRe

=
1

Rc

− Re

R2
c

dRc

dRe

. (12.42)

Finally, combining equations (12.40-12.42) we obtain:

2πG

c20

dρ

dRe

=
1

R3
e

[

ref
′(re)

1− ref(re)/F (re)
− 2f(re)

]

, (12.43)

where f(re) (see equation 12.22), F (re) (equation 12.25) and f ′ = df(re)/dre
are obtained from the approximate analytic solution described above.

Figure 12.2 shows the fractional deviation q between the non-singular and
singular solutions (equation 12.15), and the dimensionless values of |dρ/dRe|
and R3

e dρ/dRe obtained from equation (12.43) and from the exact (i.e., nu-
merical) non-singular solution. The results obtained from the approximate,
analytic and the exact (numerical) isothermal sphere solutions are basically
indistinguishable.

From the two lower plots of Figure 12.2, we see that dρ/dR < 0 for small radii,
and that dρ/dR = 0 for a radius Rs = 2.633Rc. For Rs < R < 3.672Rc we
have dρ/dR > 0 (and, hence, an unstable behaviour, see equation 12.38), and
at larger radii we have an approximately logarithmically periodical repetition
of radial bands of stable (i.e., negative dρ/dR) and unstable (positive dρ/dR)
behaviour, following the periodical crossings in lnR between the non-singular
and singular solutions of the asymptotic, large R regime (seen in the top graph
of Figure 12.2 and in equation 12.25).

Bonnor [5] argued that all of the isothermal spheres with R > Rs are un-
stable (regardless of whether their outer radius R is within one of the stable
or unstable outer bands), as perturbations at the outer radius of the cloud
will propagate inwards into unstable regions. This result is confirmed by later
numerical simulations with the full gasdynamic equations.

12.3.2 The Jeans mass of an isothermal sphere

We are then in a position of being able to obtain the Jeans mass of a self-
gravitating isothermal sphere embedded in an environment of pressure Pe.
The density at the outer boundary of the sphere then is ρe = Pe/c

2
0.
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Figure 12.2: Fractional deviation q between the non-singular and the singular
solutions (top), and dimensionless forms of |dρ/dRe| (centre) and R3

edρ/dRe

(bottom) as a function of Re/Rc. The values derived from the approximate
analytic solution (shown with solid lines), and the values obtained from the
exact (numerical) non-singular solution (shown with dashed lines) are basically
indistinguishable.

The maximum possible mass for stability is obtained setting Re = Rs =
2.633Rc in equation (12.34), obtaining:

Ms =
2c20Rc

G
F (2.633) = 1.634

c20Re

G
, (12.44)

where for the second equality we have used the fact that F (2.633) = 2.151 (see
equation 12.30). This equation should be compared with the mass obtained
with the semi-qualitative arguments, which resulted in equation (12.4).

Using equation (12.22), we can write Ms in terms of the density ρe at the edge
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of the sphere:

Ms = 2πR3
eρe

F (2.633)

f(2.633)
= 9.120R3

eρe . (12.45)

In other words, the maximum mass for radial stability of the isothermal sphere
is only 2.18 times the mass of a uniform sphere of density ρe with the same
outer radius.
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Part IV

Jets
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Chapter 13

Astrophysical and laboratory
jets

13.1 General description

Since the beginning of the XX-th century, there has been a substantial amount
of literature on experiments of subsonic and supersonic jets. Subsonic jets
become fully turbulent within a length scale similar to the jet diameter, as
they leave the nozzle that produces them. Supersonic jets have an outer,
turbulent boundary layer, and an inner “laminar core”. This laminar core is
more extended axially for higher Mach number jets.

Within the laminar core and even extending into the fully turbulent region, in
laboratory (or in “aeronautical”) jets one typically sees a series of “crossing
shock cells” or “recollimation shocks” at fixed distances along the jet axis, with
the shocks becoming weaker farther away from the outflow source. Early on
in the astrophysical literature of jet-like flows there was the notion that the
chains of knots that were observed to extend outwards from the sources were
something similar to the recollimation shocks in laboratory jets.

Also, in the astrophysical literature there is an extended study of instabilities
at the outer wall of the jet beam. These are Kelvin-Helmholtz instabilities
which give rise to the formation of shocks that can travel into the jet beam. In
laboratory jets, these instabilities give rise to the turbulent boundary layer at
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the edge of the jet beam, and at large enough distances from the source produce
a fully turbulent jet. In a rather long term, the astrophysical literature has
apparently reached a similar conclusion (though we are possibly being unjust
with this oversimplification).

The older literature of laboratory jets dealt with “developed jets”, which are
turned on, and then analysed and photographed once the initial, highly time-
dependent transient has ended. In the more recent literature, we see many
experiments of the so-called “starting jets”, in which the initial states of the
jet flow are analyzed. This is particularly easy to do with laser-generated jets,
in which the time-delays between the laser which powers the jet and the laser
used to “photograph” the flow can be quite precisely adjusted (to microseconds
or even nanoseconds).

The discovery that most of the observed emitting knots in astrophysical jets
move at highly supersonic velocities away from the source (in extragalactic
as well as in stellar jets) implies that the structures of these jets are not the
steady, recollimation shocks of laboratory jets. Also, the fact that many times
the astrophysical jets are “bipolar” (i.e., have oppositely directed “jets” and
“counterjets”) and have surprisingly symmetric knot-to-knot correspondences
between the jet and the counterjet implies that the knots are produced as a
result of a variability of the outflow very close to the position of the source.

Our description of astrophysical jets (Part IV of the present book) we will
therefore be biased to describing the effects of a time-variability of the ejection.
We will first address the effects of a time-dependence in the (modulus of) the
ejection velocity and the density. Then we will discuss the effects of a variable
ejection direction, produced by a precession of the outflow axis and/or an
orbital motion of the outflow source.

Our discussion will be directed to jets from young stars, in which it is obser-
vationally seen that the Mach number of the flow is very high (in the range
of 10 → 100). Even though the observational constraints are not as strong, it
is thought that while some extragalactic jets have high Mach numbers, oth-
ers have M ∼ 1, and are therefore fully turbulent jets. Therefore, caution
should be used when applying the theoretical ideas of this part of the book to
extragalactic jets.
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13.2 Herbig-Haro objects

The best understood astrophysical jets are the ones ejected from young stellar
objects or from recently formed stars. There is a wealth of observational data
about these so-called Herbig-Haro (HH) objects:

� they show a rich emission-line and continuum spectrum, which has been
observed from radio wavelengths to X-rays,

� the HH jets in our Galaxy are many times well resolved in ground based
and/or in space based observations,

� their evolutionary timescale is short enough that proper motions and
general time evolution of the flows is seen within a human lifetime.

An example of a HH jet is shown in Figures 13.1 and 13.2. Some of these
characteristics make them different from extragalactic jets (which are mostly
observed only through their continuum emission) or jets from symbiotic stars
or jets associated with γ-ray bursts, which are not spatially resolved.

Due to the availability of plasma diagnostics (based on emission line ratios) and
observations of spatially resolved, time-evolving structures, the physical pa-
rameters and the processes relevant for HH jets are relatively well constrained.
Because of this, in presenting jet models this book generally makes compar-
isons with HH jets, though the models in principle are applicable to other
hypersonic astrophysical and laboratory jets.

From the point of view of numerical simulations, HH jets are relatively com-
plex, because they are strongly radiative flows, with post-shock cooling dis-
tances that are very small compared to the characteristic sizes (e.g., the jet
width) of the flows. Also, the ionisation state of the gas is generally out of
equilibrium, so that the photoionisation or the coronal equilibrium relations
do not apply, and the non-equilibrium state of the multi-element gas has to be
explicitly treated.

From the point of view of analytic models, the situation is not so dire. The
strong radiative cooling guarantees that the Mach number remains extremely
high throughout the flow, so that the inter-shock regions can be treated with
good approximation as free-streaming. For some flows one can use an isother-
mal approximation, also greatly simplifying the problem.

201



Figure 13.1: Example of a Herbig-Haro jet: the region around the source of
the HH 111 outflow observed with the Hubble Space Telescope. The outflow
source is located in the left region of the image (source: Bo Reipurth)

Figure 13.2: A wider view of the HH 111 outflow, observed with the Subaru
telescope. The bright jet segment on the right side of the image corresponds
to the region shown in Figure 13.1 (source: Bo Reipurth)
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In the early 1990’s, it was realized that simulations with an arbitrarily imposed
ejection velocity variability lead to the formation of chains of two-shock “inter-
nal working surfaces” travelling down the jet beam. Many possible choices of
parameters for such a variability give simulated jets which strikingly resemble
HH jets, with a chain of aligned knots close to the outflow source, and a large
“head” (resulting from the “turning on” of the jet flow) at larger distances.
Also, a two-mode ejection velocity variability leads to the formation of chains
of “short period knots”, which catch up each other to form “long period knots”.

If one chooses a random time-variability (e.g., a variability with a time-interval
between ejection velocity peaks which has a uniform distribution between 0
and a maximum value τm), one obtains a series of knots which initially have
a maximum ejection time-separation τm between successive knots. At larger
distances from the source, these knots have mergers that eventually lead to
more massive knots with larger separations.

Such has been the success of these “variable ejection models” for modelling HH
jets, that they nowadays dominate the literature on the theory of astrophysical
jets (which is not a necessarily healthy situation for the field). Because of
this, our discussion of the theory of jets is centred on variable ejection flows
(chapters 14, 15, 16, 17 and 19).

203



204



Chapter 14

Hypersonic, variable velocity
jets

14.1 The head of a jet

Let us consider the propagation of the head of a jet into an environment which
is stationary with respect to the outflow source (this is called the “starting
jet” problem in the non-astrophysical literature). For the case of a hypersonic
jet, the head of the jet has a two-shock structure (called a “working surface”),
with a “jet shock” (or Mach disk) which slows down the jet material and a
“bow shock” which accelerates the environmental gas. This shock structure is
schematically shown in Figure 14.1.

If the jet is instantaneously “turned on”, the two shocks in the working surface
will initially be spatially coincident, and they separate until an approximately
steady configuration is formed (in which the material entering the working sur-
face from the jet and from the environment is balanced by a sideways ejection).
In this steady configuration, the bow shock and the jet shock travel away from
the outflow source with the same velocity vws.

We can then make a Galilean transformation to a reference system moving
away from the source with a velocity vws, and the working surface flow takes
the configuration shown in the bottom frame of Figure 14.1. From this figure,
we see that if the two shocks are strong, the post-shock pressure behind the
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Figure 14.1: Working surface at the head of a jet in a reference frame at rest
with respect to the outflow source (top) and in a reference frame moving with
the working surface (bottom). The bow shock is in blue and the jet shock (or
Mach disk) in purple.

bow shock is

Pbs =
2

γ + 1
ρav

2
ws , (14.1)

and the pressure behind the jet shock is

Pjs =
2

γ + 1
ρj (vj − vws)

2 , (14.2)

where we have assumed that a single value γ of the specific heat ratio applies
to all the flow.
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Now, if the working surface is moving at a constant velocity, the condition

Pbs = Pjs → ρav
2
ws = ρj (vj − vws)

2 (14.3)

has to be satisfied (otherwise, the material within the working surface would
be accelerating or decelerating). The second equation in (14.3) is the so-called
“ram-pressure balance” condition. The ram-pressure balance condition is also
valid for a working surface with a variable velocity, but in which the inertia of
the material in between the two shocks is negligible.

From equation (14.3) we obtain:

vws =
βvj
1 + β

; with β =

√

ρj
ρa
. (14.4)

The shock velocity of the bow shock is vbs = vws, and the shock velocity of the
jet shock (see Figure 14.1) is

vjs = vj − vws =
vj

1 + β
. (14.5)

Therefore, for low values of β =
√

ρj/ρa we have a jet shock with a shock
velocity vjs ≈ vj, and a slow moving working surface (with vws ≪ vj). For
high values of β, we have a fast moving working surface with vws ≈ vj. In
astrophysical jets, the low β case appears to be applicable for extragalactic
jets, and the high β case is appropriate for stellar jets.

For a working surface with radiative shocks, one can take the predictions of the
emission from plane-parallel shock models and obtain interpolation formulae
of the form:

Lline

σ
= Cρprev

α
shock , (14.6)

where Lline/σ is the luminosity in a given line per unit area of the plane shock,
ρpre is the pre-shock density, vshock the shock velocity, and C and α are two
constants derived from a fit to the line emission (in a specified shock velocity
range). Let us note that the Hα emission can be fitted with α ≈ 3.

Then, if we assume that the jet and bow shocks have the same surface area σ,
the bow shock to jet shock line intensity ratio is:

r =
Lbs
line

Ljs
line

=
ρjv

α
js

ρavαbs
= βα−2 , (14.7)
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where for the second equality we have used equation (14.6) and for the third
equality we have also used equations (14.4) and (14.5).

For example, if we take the predictions from the plane-parallel shock models
of Hartigan et al. [14], for the Hα emission of shocks with velocities vs ∼
100 km s−1, we find that a reasonable fit is obtained with equation (14.6) for
α ≈ 3. Therefore, we would conclude that the bow to jet shock Hα intensity
ratio is r = β =

√

ρj/ρa. Therefore, for the case of a “heavy jet” (i.e., with
ρj > ρa) the bow shock emission dominates.

14.2 An internal working surface

Let us assume that we have a working surface formed by the interaction be-
tween a slower outflow (of density ρ1 and velocity u1) interacting with faster
material (of density ρ2 and velocity u2) ejected at later times by the same
source. The resulting “internal working surface” is shown in Figure 14.2.

Standing in a reference system moving with the working surface (bottom frame
of Figure 14.2), we see that the ram-pressure balance condition is:

ρ1 (vws − u1)
2 = ρ2 (u2 − vws)

2 , (14.8)

from which we obtain:

vws =
βu2 + u1
1 + β

; with β =

√

ρ2
ρ1
. (14.9)

Therefore, a low β internal working surface travels with the velocity (u1) of
the earlier ejection, and a high β working surface with the velocity (u2) of the
faster, later ejection.

The shock velocities of the two working surface shocks are:

v1 = vws − u1 =
β(u2 − u1)

1 + β
, (14.10)

v2 = u1 − vws =
u2 − u1
1 + β

. (14.11)

Therefore, in the case in which the two interacting flows have the same density
(i.e., β = 1), the two shocks have a shock velocity of vj/2.
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Figure 14.2: Internal working surface formed by the interaction of faster ejecta
(of velocity v2 and density ρ2) interacting with slower moving material (of
velocity u1 and density ρ1) ejected earlier. The internal working surface (which
moves with a velocity u1 < vws < u2) is shown in a reference frame at rest
with respect to the outflow source (top) and in a reference frame moving with
the working surface (bottom).

14.3 “Catching-up” of fluid parcels

In a hypersonic jet, the pressure gradient force is negligible with respect to
the inertia, and therefore (in the absence of other forces, such as an external
gravitational force) the fluid parcels have ballistic motions, preserving the ve-
locity with which they were ejected. Let us consider a general ejection velocity
variability u0(τ), where τ is the time at which the fluid parcels are ejected.
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We now consider two fluid parcels, which we number “1” and “2”, ejected
at (infinitesimally close) times τ and τ + ∆τ , respectively. Their velocities
therefore are:

v1 = u0(τ) ;

v2 = u0(τ +∆τ) ≈ u0(τ) + ∆τ u̇0(τ) , (14.12)

where u̇0(τ) = du0/dτ . As a function of increasing time t, they then have the
trajectories:

x1(t) = (t− τ) u0(τ) ;

x2(t) = (t− τ −∆τ) u0(τ +∆τ) ≈

(t− τ) u0(τ)−∆τ u0(τ)(t− τ)∆τ u̇0(τ) , (14.13)

where in the last equality we have kept only the terms up to first order in ∆τ .
From this equation, it is clear that we will have x1(tcol) = x2(tcol) at a time

tcol =
u0(τ)

u̇0(τ)
+ τ . (14.14)

In other words, for u̇0(τ) > 0, at the time tcol (given by equation 14.14), the
faster fluid parcel ejected at τ +∆τ catches up with the slower parcel ejected
immediately before (at time τ), leading to the formation of a two-shock working
surface. For u̇0(τ) ≤ 0, this catching up does not take place.

The two parcels catch up with each other at a distance

xcol = (tcol − τ) u0(τ) =
u20(τ)

u̇0(τ)
(14.15)

from the source.

This catching-up of fluid parcels to form a working surface of course only takes
place if the parcels do not collide before with a previously existing working
surface. This possibility is explored in the following sections.
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14.4 Free-streaming flow and the formation of

working surfaces

14.4.1 General considerations

Let us consider the equation for a 1D flow in the form of Newton’s second law:

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂P

∂x
= 0 , (14.16)

where u is the x-velocity, ρ the density and P the pressure. It is clear that if
the variations of u and P have similar characteristic spatial scales, the ratio
between the second and third terms of this equation scales as ∼ γM2, where γ
is the specific heat ratio and M2 = ρu2/(γP ) is the Mach number of the flow.
Therefore, in the continuous segments of a hypersonic jet (with M ≫ 1), the
second term of equation (14.16) dominates over the third term, and therefore
the equation of motion reduces to:

∂u

∂t
+ u

∂u

∂x
= 0 . (14.17)

This is Riemann’s equation (also known as the “inviscid Burgers’s equation”,
which actually corresponds to the limit of viscosity going to zero of an equiv-
alent equation with a “volume viscosity” term). Riemann’s equation has the
free-streaming solution:

u(x, t) =
x

t− τ
= u0(τ) , (14.18)

where u0(τ) is the ejection velocity at the time τ at which the parcel at (x, t)
was ejected. One can show that this is indeed a solution by inserting it in
equation (14.17).

It is a straightforward exercise to consider the 1D Lagrangean continuity equa-
tion for a jet of slowly varying cross section σ(x), in the form:

d

dt
ln σρ+

∂u

∂x
= 0, (14.19)

and to combine it with equation (14.18) to obtain the time and position-
dependent density. From (14.18), x = (t − τ) u0(τ), so that at constant t we
have:

dx = − [u0 + (t− τ)u̇0] dτ , (14.20)
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where u̇0 = du0/dτ . This can be inserted into (14.19) to obtain:

d

dt
ln σρ =

u̇0
u0 − (t− τ)u0

. (14.21)

This equation has the integral:

σρ =
σ0ρ0u0

u0 − (t− τ)u̇0
, (14.22)

where σ0 and ρ0(τ) are the injection cross section and density, respectively.

Clearly, if u0 is a growing function of τ , the fluid parcels ejected at later times
will eventually catch up with slower parcels ejected earlier. The catching up
of two parcels occurs at the points in which the travelling wave resulting from
the u0(τ) ejection steepens to a vertical: i.e., attains values ∂u/∂x→ −∞.

From equation (14.18) one can easily calculate:

∂u

∂x
=

u̇0(τ)

(t− τ)u̇0(τ)− u0(τ)
, (14.23)

where u̇0 = du0/dτ . As the ejection velocity is positive (u0 > 0), it is clear that
∂u/∂x can diverge only if u̇0 > 0. Therefore, two parcels ejected infinitesimally
close to time τ will catch up with each other at the time tcol that annuls the
denominator of equation (14.23),

tcol =
u0
u̇0

+ τ . (14.24)

However, this catching up will not necessarily occur because the flow parcels
ejected at time τ might enter an already developed working surface before their
catching-up time.

The first working surface along the jet will be formed by the fluid parcels
ejected at a time τc, which corresponds to the minimum value of tcol. In other
words, τc is the root of the equation:

dtcol
dτ

=
d

dτ

(

u0
u̇0

)

+ 1 = 0 . (14.25)

Through simple manipulations, this equation can be written as

u0(τc) ü0(τc) = 2 u̇20(τc) , (14.26)
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where ü0 = d2u0/dτ
2.

For a given functional form of the ejection velocity u0(τ) we can find the
ejection time (or times) τc which lead to the formation of a working surface.
Once we have obtained these values, we can then calculate (from equation
14.24) the time tc:

tc =
u0(τc)

u̇0(τc)
+ τc , (14.27)

at which it is formed, and (from equation 14.18) its initial distance

xc = (tc − τc) u0(τc) . (14.28)

An alternative criterion for determining the time and position at which working
surfaces are formed is to calculate the catching-up distance between parcels:

xcol =
u20(τ)

u̇0(τ)
, (14.29)

and then compute the values of τc from the minima of xcol(τ). The condition
of minimal xcol can be straightforwardly shown to be equivalent to equation
(14.26).

14.4.2 The case of a sinusoidal ejection variability

Let us consider an ejection velocity of the form

u0(τ) = v0 + va sin(ωτ) , (14.30)

with constant v0, va and ω.

Inserting equation (14.30) into (14.26), one obtains:

sin2 ωτc −
v0
va

sinωτ − 2 = 0 , (14.31)

which has the solution:

sinωτc =
1

2

(

1−
√

1 + 8
v2a
v20

)

≈ −2
va
v0
, (14.32)
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where the second equality is valid for the va/v0 ≪ 1 limit. The root with
a positive sign for the discriminant (see equation 14.32) gives an unphysical
solution with sinωτc > 1.

Now, with the value obtained for τc (from equation 14.32), we can calculate
the time tc (from equation 14.27) and the position xc (equation 14.28) at which
the successive working surfaces are formed. In the va/v0 ≪ 1 limit, we obtain:

tc − τc =
v0
ωva

, xc =
v20
ωva

. (14.33)

14.4.3 Ejection variability with two sinusoidal modes

We now consider an ejection time-variability of the form:

u0(τ) = v0 + v1 sin(ω1τ + φ1) + v2 sin(ω2τ) , (14.34)

with constant v0, v1, v2, ω1, ω2 and φ1. The mean velocity and the velocity
amplitudes have to satisfy the v0 ≥ v1 + v2 condition so that unphysical,
negative outflow velocities do not occur.

Inserting equation (14.34) into (14.26), one straightforwardly obtains:

v1ω
2
1

[

v0 sin(ω1τ + φ1) + v1 sin
2(ω1τ + φ1)+

2v1 cos
2(ω1τ + φ1)

]

+

v2ω
2
2

[

v0 sin(ω2τ) + v2 sin
2(ω2τ)+

2v2 cos
2(ω2τ)

]

=

−v1v2
[

(ω2
1 + ω2

2) sin(ω1τ + φ1) sin(ω2τ)

+4ω1ω2 cos(ω1τ + φ1) cos(ω2τ)
]

. (14.35)

This equation can in principle be solved numerically in order to obtain the
values τc of the ejection times which lead to the formation of working surfaces.

In order to proceed analytically, we consider the case in which ω1 and ω2

correspond to a “slow” and a “fast mode”, which satisfy the conditions:

ω2 ≫ ω1 ; v2ω
2
2 ≫ v1ω

2
1 . (14.36)
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Under this assumption, equation (14.35) takes the simpler form:

(

1 +
v1
v0

sinφ

)

sinω2τ +
v2
v0

(

2− sin2 ω2τ
)

= 0 . (14.37)

In this equation, φ = ω1τc + φ1.

Equation (14.37) has the solution:

sinω2τc =
v0 + v1 sinφ

2v2

[

1−
√

1 +
8v22

(v0 + v1 sinφ)2

]

. (14.38)

The τc corresponding to the solution with lowest modulus of the arcsine can
then be inserted in equations (14.34), (14.27) and (14.28) to obtain the time
and position of the working surface.

It is possible to derive simpler expressions in the case for which the “fast”
mode has a small amplitude, i.e.

v2 ≪ v0, v1 . (14.39)

Clearly, the chosen values of v2 cannot be too small, because if not condition
(14.36), on which our solution is based, will not be satisfied. In this limit of
small v2, equation (14.38) simplifies to:

sinω2τc = − 2v2
v0 + v1 sinφ

, (14.40)

which can be used together with equations (14.34) and (14.28) to obtain:

xc =
(v0 + v1 sinφ)

2

ω1v1 cosφ+ ω2v2
, (14.41)

valid in the v2 ≪ v1 limit.

It is clear that for

ω1v1 > ω2v2 , (14.42)

equation (14.41) does not give positive values of xc for all possible values of
the phase φ of the “slow” mode. The negative values of xc correspond to a
suppression of the working surfaces of the (ω2, v2) mode due to the presence
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of the slow, (ω1, v1) mode. When condition (14.42) is met, the suppression of
the “fast” (ω2, v2) mode occurs for phases φ such that φa < φ < φb, where

φa = cos−1

(

−ω2v2
ω1v1

)

; φb = 2π − φa , (14.43)

where φa corresponds to the first positive value of the arccosine.

Figure 14.3 shows examples for a two-sine variability (see equation 14.34) with
v0 = 1, ω1 = 0.1, ω2 = 1 and φ1 = 0, and three choices for the amplitudes of
the two modes: (v1, v2) = (0.4, 0.4), (0.6,0.2) and (0.8,0.05). The three choices
of parameters satisfy the conditions of equation (14.36), and the two latter
choices satisfy condition (14.39), at least in a marginal way. Also, the last
choice of parameters satisfies condition (14.42), so that it develops a gap in
the formation of “fast mode” working surfaces.

Figure 14.3 shows the three chosen time variabilities (left column) and the
resulting working surface formation. The right column shows the value of the
catching-up distance (equation 14.29), which has minima at the τ = τc values.
In these graphs, we also show the results obtained for xc from equations (14.38)
and (14.29) (dotted line) and from equation (14.41) (dashed line), calculated
by setting the phase to φ = ω1τ .

We see that for all parameters the catching-up distance (see equation 14.29
and Figure 14.3) has positive and negative (unphysical) branches. The minima
of the positive branches coincides with the values of xc derived from equations
(14.38) and (14.28) for all of the chosen parameters. The simpler solution of
equation (14.41) does not work well for the (v1, v2) = (0.4, 0.4) (top frames),
but is basically indistinguishable from the more accurate solution (obtained
from equations 14.38 and 14.29) in the other two cases (which do satisfy con-
dition 14.39).
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Figure 14.3: Three forms of the ejection variability (see equation 14.34), all
sharing the parameters v0 = 1, ω1 = 0.1, ω2 = 1 and φ1 = 0, and with
(v1, v2) = (0.4, 0.4) (top), (0.6,0.2) (centre) and (0.8,0.05) bottom) are shown
in the left column. The right column shows the catching-up distances xcol
as a function of time (equation 14.29) resulting from these three variabilities
(solid lines) and the distances of working surface formation xc calculated from
equations (14.38,14.29) (dashed lines) and from equation (14.41) (dotted lines).
It is clear that the minima of xcol are well reproduced (except in the model
displayed on the top row for the case of the results of equation 14.41) by the
analytically obtained values of xc. 217
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Chapter 15

The centre of mass equation of
motion

15.1 General considerations

If we want to solve for the motion of an internal working surface, we have
to consider the free-streaming solution (equations 14.18 and 14.22) and an
equation of motion for the working surface itself. A possibility is to use the
ram-pressure balance condition (equation 14.4), which is appropriate for a
variable velocity working surface provided that the working surface efficiently
ejects matter sideways, so that the inertia of the material within it is negligible.

It is also possible to consider the opposite limit, in which most of the shocked
material remains within the working surface. This case is clearly the appro-
priate one for a spherically symmetric flow, and also for a jet working surface
in an appropriate regime. The position of a mass conserving working surface
is equal to the position of the centre of mass of all of the fluid parcels which
have piled up at the working surface:

xcm =

∫

x dm
∫

dm
, (15.1)

where for a variable outflow dm = σ0ρ0u0dτ , with σ0 the ejection cross section,
and ρ0(τ) and u0(τ) the variable ejection density and velocity, and

x = (t− τ) u0(τ) (15.2)
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is the position x along the jet that the fluid parcels (ejected at time τ) would
have had (at time t) if they had not merged with the working surface. For such
a variable ejection, the integration limits are τ1 and τ2, the ejection times for the
fluid parcels that are now entering the working surface from the downstream
and upstream directions (respectively). These can be obtained by finding
appropriate roots of the free-streaming flow equation:

xcm = (t− τ) u0(τ) . (15.3)

For a working surface moving into a stationary environment, the environ-
mental contribution to the integrals in equation (15.1) are obtained setting
dm = σ(x)ρa(x)dx and using appropriate spatial limits. Here, σ(x) is the
cross section of the jet, and ρa(x) is the (in principle, position-dependent)
environmental density.

This “centre of mass formalism” has the practical advantage that it gives
the time-dependent position of the working surfaces (see equation 15.1) as a
function of time (or position) integrals of combinations of τ , u0(τ) and ρ0(τ)
(or possibly also ρa(x), see above). If the functions within the integrals are
integrable analytically, one then obtains a system of algebraic equations that
give the time-dependent position of the working surface. These functions are
quite complicated, and many times xcm has to be obtained through a numerical
inversion of the system of equations (composed of equations 15.1 and 15.3).

This has to be compared with the “ram-pressure balance” formalism (see equa-
tion 14.4) which gives an expression for dxws/dt = vws, which has then to
be integrated to obtain the solution. Only in very particular cases can this
equation be integrated analytically, and the solutions are generally computed
numerically.

15.2 Asymptotic regime of large distances

from the outflow source

Let us now consider an arbitrary, periodic variation u0(τ), ρ0(τ) of the ejection
velocity and density. This periodic ejection variability produces a chain of
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internal working surfaces, and we consider the time-dependent position

xcm =

∫ τ2
τ1
x(τ)ρ0(τ)u0(τ)dτ
∫ τ2
τ1
ρ0(τ)u0(τ)dτ

, (15.4)

of the centre of mass of the material within one of the working surfaces, where
τ1 and τ2 are two successive roots of equation (15.3):

xcm = (t− τ1,2) u0(τ1,2) , (15.5)

and x(τ) (in equation 15.4) is given by equation (15.2).

For large distances from the source, most of the ejected material has already
entered the working surfaces, so that the ejection time-interval of the material
entering the working surface from the upstream and downstream directions
becomes τ2 − τ1 ≈ τp, where τp is the period of the ejection variability. In this
regime, the τ1 → τ2 interval of the integrals can therefore be replaced by the
−τp/2 → τp/2 interval. Equation (15.4) then becomes:

xcm = (t− τa)va , (15.6)

where

va =

∫ τp/2

−τp/2
ρ0(τ)u

2
0(τ)dτ

∫ τp/2

−τp/2
ρ0(τ)u0(τ)dτ

, (15.7)

is the (constant) asymptotic velocity of the working surface and

τa =

∫ τp/2

−τp/2
τρ0(τ)u

2
0(τ)dτ

va
∫ τp/2

−τp/2
ρ0(τ)u0(τ)dτ

, (15.8)

is an average ejection time of the material that is within a given internal
working surface. Clearly, by choosing to carry out the integrals over the
−τp/2 → τp/2 range, we are choosing the internal working surface formed
by the material ejected in this ejection time interval.

Therefore, regardless of the form of the periodic ejection velocity and density
variability, at large distances from the source the working surfaces travel at
a constant velocity, which is given by equation (15.7). It is also possible to
obtain the shock velocities of the working surface shocks in the following way.
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At large distances from the source, the material in the continuous segments
of the jet corresponds to a small range of ejection times around τn, where the
index n numbers the successive continuous segments. The ejection time τn is
determined by the condition u0(τn) = va (where va is given by equation 15.7).
Clearly,

τn+1 = τn + τp , (15.9)

and the free-streaming flow on the two sides of the working surface have linear
velocity vs. position relationships, giving velocities

u1 =
xcm
t− τn

, u2 =
xcm

t− τn+1

, (15.10)

immediately down- and up-stream of the working surface.

Using equation (15.9), we have:

t− τn+1 = (t− τn) (1− ǫ) , with ǫ =
τp

t− τn
, (15.11)

with ǫ≪ 1 in the asymptotic regime.

We can then use equations (15.6), (15.10) and (15.11) to calculate the velocity
jump accross the working surface:

∆v = u2 − u1 =
v2aτp
xcm

, (15.12)

where we have carried out a first order expansion in ǫ (see equation 15.11).

Also, the free-streaming flow density integral (14.22), when evaluated in τn
gives:

ρ1,2 ≈
ρ0(τn)σ0

σ(xcm)
[

1− (t− τn)
d lnu0

dτ
(τn)

] , (15.13)

where we can calculate both upstream and downstream densities using τn
given that in the asymptotic regime we have ǫ ≪ 1 (see equation 15.11). In
this equation, σ0 is the ejection cross section and σ(xcm) the cross section at
the position of the working surface. Equation (15.13) can be further simplified
by noting that

−(t− τn)
d ln u0
dτ

(τn) ∼
t− τn
τp

= ǫ−1 , (15.14)
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and therefore, in the asymptotic, ǫ ≪ 1 regime the first term in the denomi-
nator of equation (15.13) can be neglected. In this way, we obtain:

ρ1,2 ≈ − ρ0(τn)σ0u0(τn)

σ(xcm)u̇0(τn)(t− τn)
, (15.15)

with equal densities on both sides of the internal working surface. The fact
that the densities on both sides of the working surface asymptotically approach
each other, and that the velocity of the working surface becomes constant
implies that the shock velocities of the two working surface shocks also have
the same value. Therefore, the velocity jump ∆u across the working surface
(see equation 15.12) is divided into two shocks of velocities ∆u/2. In this way,
we see that as the working surface travels away from the outflow source at the
asymptotic velocity va, the shocks have velocities that decrease as 1/xcm (see
equation 15.12).

Combining equations (15.7) and (15.15) we obtain:

ρ1,2 = −ρ0(τn)σ0
σ(xcm)

1
d lnu0

dτ
(τn)

1

xcm
. (15.16)

For a cylindrical jet, σ0 and σ(xcm) have the same value and cancel out. ρ0(τn)
and d ln u0/dτ(τn) are calculated at the time at which the material of the
asymptotic continuous jet beam segments were ejected, which is given by the
condition u0(τn) = va (see above). For a given variability they are constants,
and the densities on both sides of the internal working surface have a depen-
dency

ρ1,2 ∝
1

xcm
. (15.17)

Finally, if we consider the fit to the emission of plane shock models given in
equation (14.6), using equations (15.12) and (15.17) we obtain the result that
the intensity of an emission line emitted by a working surface scales as:

Lline ∝ x−(α+1)
cm , (15.18)

which for Hα (α ≈ 3) gives a steep decline of the emission as distance to the
source to a power −4. This decrease is satisfied by a single working surface
which as a function of time travels away from the source, and also by successive
working surfaces formed by a periodic ejection variability. Both effects (the
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decrease in intensity of a single, evolving working surface, and the intensity
decrease between successive working surfaces along a jet) are observed in some
Herbig-Haro jets.
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Chapter 16

The uniformly accelerating jet
in a homogeneous environment

16.1 Defining the problem

In this chapter, we present an example of a simple ejection velocity and density
variability, and how to obtain solutions with the ram-pressure balance and
centre of mass formalisms for the head of the jet.

We consider a jet with an ejection velocity of the form:

u0(τ) = 0 for τ < 0 u0(τ) = aτ for τ ≥ 0 , (16.1)

with constant “acceleration” a. We will assume that the jet is cylindrical (i.e.,
with a position-independent cross section σ0) and that it moves into a uniform
environment of density ρa.

It is easy to show that a working surface is formed at t = 0 at a position x = 0.
In order to follow the time evolution of this “jet head”, we will use both the
“center of mass” and the “ram pressure balance” formalisms. In order to do
this, we also have to specify the time dependence of the ejection density ρ0(τ).
Let us analyze two possibilities:

1. a constant mass loss rate ṁ = ρ0(τ)u0(τ), so that the ejection density
is given by ρ0(τ) = ṁ/u0(τ) (where ṁ is the mass loss rate at the jet
source per unit area of the jet beam),
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2. a time-independent ejection density ρ0.

16.2 Centre of mass equation of motion

16.2.1 The equation for the position of the jet head

From equation (15.1) we have:

xcm

[
∫ τ

0

ρ0u0dτ
′ +

∫ xcm

0

ρadx

]

=

∫ τ

0

xjρ0u0dτ
′ +

∫ xcm

0

xρadx , (16.2)

where ρa is the (position-independent) environment density, ρ0 and u0 are the
time-dependent ejection density and velocity. xj is given as a function of the
ejection time τ ′ and the present time t by:

xj = (t− τ ′)u0(τ
′) = (t− τ ′)aτ ′ , (16.3)

and τ (the ejection time of the material which is now entering the jet head) is
the root of equation:

xcm = (t− τ)u0(τ) = (t− τ)aτ . (16.4)

The second equalities in equations (16.3-16.4) correspond to our choice of ejec-
tion velocity (equation 16.1). From equation (16.4), we can find τ as a function
of t and xcm:

τ =
1

2

(

1 +
√

t2 − 4xcm/a
)

. (16.5)

Combining equations (16.2-16.4) we have:

xcm

[
∫ τ

0

ρ0aτ
′dτ ′ + ρaxcm

]

=

∫ τ

0

(t− τ ′)aτ ′ρ0aτ
′dτ ′ +

ρax
2
cm

2
. (16.6)

In order to proceed, we have to specify our choice for the ejection density
ρ0(τ

′).
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16.2.2 The case of constant ṁ

Setting ρ0(τ
′) = ṁ/u0(τ

′) = ṁ/(aτ ′), equation 16.6 becomes:

xcm (ṁτ + ρaxcm) = ṁaτ 2
(

t

2
− τ

3

)

+
ρax

2
cm

2
. (16.7)

From equation (16.4), we find the relation

t =
xcm
aτ

+ τ , (16.8)

which we substitute in (16.7) to finally obtain:

ρa
ṁ
τx2cm + xcm − aτ 3

3
= 0 , (16.9)

with positive solution:

xcm(τ) =
ṁτ

2ρa

[

−1 +

√

1 +
4aρaτ

2ṁ

]

. (16.10)

We can then generate the full solution to the problem of a uniformly accel-
erating jet in a parametric form by generating xcm(τ) (equation 16.10) and
t(xcm, τ) (equation 16.8) in order to plot xcm as a function of evolutionary
time t.

Let us note that in the ρa → 0 limit, the solution to the problem takes the
simpler form:

xcm =
a

3
τ 2 . (16.11)

We can also obtain xcm as an explicit function of t by combining equations
(16.5) and (16.7), giving:

xcm =
8

9
xc

[

(

1 +
3

4

t

tc

)3/2

−
(

1 +
9

8

t

tc

)

]

, (16.12)

with:

tc ≡
ṁ

aρa
, and xc ≡

ṁ2

aρ2a
=
ṁ

ρa
tc . (16.13)

In the t≪ tc limit, this equation becomes:

xcm ≈ 3

16
at2 , (16.14)
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16.2.3 The case of constant ρ0

Setting ρ0 = const. in equation (16.6) and following the steps of the previous
subsection, we obtain the quadratic equation:

3ρa
ρ0aτ 2

x2cm + xcm − aτ 2

2
= 0 , (16.15)

with positive solution:

xcm =
ρaaτ

2

6ρa

[

−1 +

√

1 +
6ρa
ρ0

]

. (16.16)

In order to plot xcm as a function of evolutionary time t, one has to generate
t(τ) using equation (16.8).

In the ρa → 0 limit, equation (16.16) takes the form:

xcm =
a

2
τ 2 . (16.17)

We also obtain xcm explicitly as a function of evolutionary time t combining
equations (16.5) and (16.15), giving:

xcm =
a

9
β0

[

β0(β
2
0 − 18) + (β2

0 + 6)3/2

(β2
0 − 2)2

]

t2 , (16.18)

where β0 =
√

ρ0/ρa. Therefore, the jet head travels with a constant accelera-
tion (which is twice the factor multiplying t2 on the right hand side of equation
16.18).

16.3 Ram-pressure balance equation of motion

16.3.1 The equation for the position of the jet head

From equation (14.4) we have:

(

1 +

√

ρa
ρ

)

dxws

dt
= u0(τ) , (16.19)
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where we have set vws = dxws/dτ , u0(τ) is the ejection velocity, ρa is the
ambient density and ρ is the density of the jet beam just upstream of the
working surface. The ejection time τ of the material entering the working
surface is obtained from the free-streaming relation:

xws = (t− τ)u0(τ) . (16.20)

Now, from equation (16.20) we have:

t = τ +
xws

u0(τ)
. (16.21)

and differentiating both sides we obtain:

dt =

(

1 +
1

u0

dxws

dτ
− xw
u20

du0
dτ

)

dτ . (16.22)

Using this relation, we now convert equation (16.19) into the differential equa-
tion

dxws

dτ

√

ρa
ρ

= u0 − xws
d ln u0
dτ

, (16.23)

where ρ is given by the free-streaming flow density solution (equation 14.22).

For our chosen form u0(τ) = aτ for the ejection velocity, we use equations
(16.1) and (14.22) to obtain the equation of motion:

dxws

dτ
=

√

ρ0(τ)

ρa
aτ

√

1− xws

aτ 2
. (16.24)

In order to proceed, we have to specify our choice for the ejection density ρ0(τ).

16.3.2 The case of constant ṁ

Setting ρ0(τ) = ṁ/u0(τ) = ṁ/(aτ), equation (16.24) becomes:

dxws

dτ
=

√

ṁ

ρa

√

aτ − xws/τ . (16.25)
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This equation has two regimes with analytical integrals. It is clear that in the
ρa → 0 or the τ → 0 limits, equation (16.25) has the “near” solution:

x(n)ws = aτ 2 . (16.26)

The large τ , the “far” solution:

x(f)ws =
2

3

√

aṁ

ρa
τ 3/2 , (16.27)

is obtained by assuming a working surface with substantial slowing down, so
that xws ≪ aτ 2.

It is also possible to obtain a “small ρa” series solution in the following way.
We write equation (16.25) in the form:

xws = τ

[

aτ − ρa
ṁ

(

dxws

dτ

)2
]

, (16.28)

and use it to generate an iteration chain of approximations to xws. As a first
approximation, we use x

(0)
ws = x

(n)
ws = aτ 2, and insert it in the right-hand side

of equation (16.28) to obtain:

x(1)ws = aτ 2
(

1− 4ρaaτ

ṁ

)

. (16.29)

We can now differentiate x
(1)
ws with respect to τ , and insert the result in the

right-hand-side of equation (16.28) to obtain the next iteration:

x(2)ws = aτ 2
[

1− 4
ρaaτ

ṁ

(

1− 6
ρaaτ

ṁ

)2
]

. (16.30)

It is straigthforward to show numerically that this series of successive approxi-
mations diverges from the full solution of equation (16.25) when τ approaches
ṁ/(ρaa).

In order to proceed, we first write an adimensional version of equation (16.25),
and then integrate it numerically. In terms of the dimensionless variables:

η =
aρ2a
ṁ2

xws ; y =
aρa
ṁ
τ , (16.31)
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Figure 16.1: Top panel: the solid line shows the dimensionless solution η(y)
for the time-dependent position of the jet head, and the two analytic approxi-
mations, η(n) (short dashes) and η(f) (long dashes). Bottom panel: the relative
deviation between the full analytic approximation η(a) (see equation 16.34) and
the “exact” (i.e., numerical) solution.

equation (16.25) takes the form:

dη

dy
=
√

y − η/y , (16.32)

and by integrating it numerically we obtain the η(y) dependence shown in
Figure 16.1.

In this Figure, we also show the “near” and “far” field solutions:

η(n)(y) = y2 ; η(f)(y) =
2

3
y3/2, (16.33)

corresponding to the dimensional equations (16.26-16.27).
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We compute a non-linear average of the near and far approximations of the
form:

η(a) =
(

η−5/4
n + η

−5/4
f

)−4/5

. (16.34)

which has a relative error ǫrel = η(a)/η− 1 < 0.04 with respect to “exact” (i.e.,
numerical) solution η(y), and is therefore a reasonable analytic approximation
of the solution. The dependence of ǫrel on y is shown in the bottom panel of
Figure (16.1).

The average between the “near” and “far” solutions of equation (16.34) can also
be done with the dimensional near and far solutions (equations 16.26-16.27), to
obtain an analytic approximation to the full (numerical), dimensional solution.

Another approximation to the numerical η(y) solution is:

η(b) =
2y

9

(

−1 +
√

1 + 9y
)

, (16.35)

which coincides with the full solution in the y → 0 and y → ∞ limits, and has
a maximum relative deviation of ∼ 0.09. This interpolation has a functional
form similar to the centre of mass, constant ṁ solution (see equation 16.10).

16.3.3 The case of constant ρ0

Setting ρ0 = const. in (16.6) and taking the square of the equation, we obtain:

ρa
ρ0a

(

dxws

dτ

)2

+ xws = aτ 2 = 0 . (16.36)

Proposing a power law solution, one straightforwardly finds:

xws =
ρaaτ

2

8ρa

[

−1 +

√

1 +
16ρa
ρ0

]

. (16.37)

In order to plot xcm as a function of evolutionary time t, one has to generate
t(τ) using equation (16.8).

In the ρa → 0 limit, equation (16.37) takes the form:

xws = aτ 2 . (16.38)
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Finally, we obtain the explicit dependence of the position xws of the jet head
as a function of evolutionary time t combining equations (16.5) and (16.37),
giving:

xws =
8a
(

−1 +
√

1 + 16ρa
ρ0

)

[8ρa
ρ0

− 1 +
√

1 + 16ρa
ρ0

]2
t2 . (16.39)

In the limits of a high and low density jet, this expression simplifies to:

xws ≈
at2

4
for ρ0 ≫ ρa ; xws ≈

a

2

√

ρ0
ρa
t2 for ρ0 ≪ ρa . (16.40)

16.4 The head of an accelerating Herbig-Haro

jet

We now consider an example appropriate for a jet from a young star. For the
“acceleration parameter” a, we consider an ejection velocity with an increment
of 100 km s−1 per millennium: a = 100 km s−1/1000 yr= 3.17× 10−4 s−2. For
the models of constant mass loss rate, we choose Ṁj = 10−8 M⊙yr

−1 and a
rj = 50 AU radius, giving ṁ = Ṁj/(πr

2
j ) = 3.359× 10−13 g cm−2 s−1. For the

constant density case, we choose a density ρj = 3.60 × 10−20 g cm−3 (i.e., an
atom+ion number density nj = 1.666 × 104 cm−3 for a gas with 90% H and
10% He), which gives Ṁj = 10−8 M⊙yr

−1 for a velocity of 100 km s−1. For the
environment, we choose two number densities: na = 5000 and 100 cm−3.

Figure 16.2 shows the positions of the jet head as a function of evolution-
ary time t (calculated as a function of ejection time τ using, e.g., equation
16.21) for the four jet models (constant ṁ and constant ρ0, with the centre
of mass and the ram-pressure balance formalisms), for an environment with
na = 5000 cm−3 (top) and na = 100 cm−3 (bottom frame). It is clear that
the ram-pressure balance formalism gives higher velocities for the jet head,
resulting in larger distances from the outflow source. In the na = 100 cm−3

models, the ram-pressure balance solutions are in the “small ρa limit”, and
therefore the constant ṁ and constant ρ0 models coincide (see equations 16.26
and 16.38).
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Figure 16.2: Models of jet heads moving into an environment with density
na = 104 cm−3 (top) and 103 cm−3 (bottom), with the remaining model
parameters being discussed in the text. The curves in red correspond to a
time-independent ejection density, and the blue curves to models with a time-
independent ejection mass loss rate. The solid curves are obtained from the
“centre of mass” and the dashed lines from the “ram-pressure balance” for-
malisms.
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Chapter 17

Time-dependent ejection
direction

17.1 General comments

Many astrophysical jets show evidence for a time-dependence in the ejection
direction. Many times this evidence is a locus on the plane of the sky that can
be interpreted as the projection of a spiral. This has been interpreted as the
result of a precession of the outflow axis.

Another possibility is that the outflow source is part of a binary, and that
the motion of the source in an orbit produces an additional, time-varying
component in the ejection velocity of the outflow. If the orbit is approximately
circular, and with an orbital axis parallel to the outflow axis, the resulting jet
has a locus that quite closely resembles a precession spiral.

A “precession spiral” and an “orbital spiral” clearly have a quite dramatic
difference: while the first one produces jet/counterjet pairs with a “point sym-
metric” structure, the latter one produces a “mirror symmetric” jet/counterjet
pair. It appears that both kinds of structures are observed in astrophysical
jets.

235



17.2 Precession

A ballistic jet with a constant ejection velocity modulus vj, and with an ejection
direction that precesses with a period τp around the z-axis with an angle α, at
time t has a beam with the locus:

x(t, τ) = (t− τ)vj sinα cosωτ , (17.1)

y(t, τ) = (t− τ)vj sinα sinωτ , (17.2)

z(t, τ) = (t− τ)vj cosα , (17.3)

where ω = 2π/τp is the precession frequency, and it has been assumed that at
an ejection time τ = 0 the jet lies on the xz-plane.

Equations (17.1-17.3) can be combined to obtain the 3D shape of the locus of
the jet at time t:

x = z tan β cos [ω(t− z/vj cosα)] , (17.4)

y = z tan β sin [ω(t− z/vj cosα)] . (17.5)

17.3 Circular orbital motion

We now consider a ballistic jet ejected with a constant velocity modulus vj,
parallel to the axis of a circular orbital motion of the outflow source. At a
time t, the locus of the jet is:

x(t, τ) = ro cosΩτ − (t− τ)roΩ sinΩτ , (17.6)

y(t, τ) = ro sinΩτ − (t− τ)roΩcosΩτ , (17.7)

z(t, τ) = (t− τ)vj , (17.8)

where z is the orbital axis, and we have assumed that at an ejection time
τ = 0 the source lies on the y axis, and rotates towards the x-axis. In these
equations, ro is the radius and Ω = 2π/τo the frequency of the circular orbit.

It is straightforward to combine equations (17.6-17.8) to obtain:

x = κz sin

(

κz

ro
− Ωt

)

+ ro cos

(

κz

ro
− Ωt

)

, (17.9)
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y = κz cos

(

κz

ro
− Ωt

)

− ro sin

(

κz

ro
− Ωt

)

, (17.10)

where κ = vo/vj, and we have used the relation Ω = 2π/τo = vo/ro, where τo
is the orbital period.

The separation between the jet beam and the orbital axis is:

r(z) = ro

√

1 + κ2
(

z

ro

)2

, (17.11)

where we have used equations (17.9-17.10). Therefore, for small z/ro the radius
grows quadratically with z, and at large z/ro, the separation r with respect to
the orbital axis grows linearly with z. Therefore, at large z/ro, the locus joins
a precession spiral of opening angle β that satisfies the relation:

κ = tan β . (17.12)

At scales much larger than the orbital radius of the source, the effect of a
circular orbital motion is to produce a precession-like signature in the ob-
served locus of the jet. If a counterjet is also detected, this “orbital jet” flow
can easily be distinguished from a precessing flow because it shows a “mirror
symmetry” with respect to the orbital plane, with the jet and the counterjet
having mirror symmetric excursion from the mean outflow axis (instead of the
point-symmetric “jet to one side-counterjet to the other side” excursions of a
precessing flow).

Interestingly, in the case of an “orbital motion spiral”, the opening angle α
directly gives the ratio κ = vo/vj = tan β (see equation 17.12) between the
orbital and the outflow velocities. Also, the spatial pass of the spiral is

∆z =
2πro
κ

. (17.13)

Using equations (17.12-17.13) one can then use the observed shape of locus of
the jet beam, together with a separate measure of the jet velocity vj, to deduce
the orbital radius and velocity of the outflow source.

Therefore, under the assumptions of a circular orbit and an ejection parallel
to the orbital radius, it is possible to derive an estimate of the mass of the
companion of the outflow source. If this estimated mass has a reasonable (i.e.,
stellar or planetary) mass, the explanation of the observed jet/counterjet shape
in terms of an orbital motion is likely to be correct.
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17.4 Precession+orbital motion

We now assume that we have a jet from a source in a circular orbit of radius
ro and frequency Ω, with position:

xs(τ) = ro cosΩτ ; ys = ro sinΩτ , (17.14)

with a constant velocity vj along the direction of the outflow, measured in a
reference system moving with the source. If the jet also has a precession with
an angle α, and a frequency ω, the velocity in an inertial system attached to
the centre of the circular orbit is:

vx = vj sinα cosωτ − vo sinΩτ , (17.15)

vy = −vj sinα sinωτ + vo cosΩτ , (17.16)

vz = −vj cosα, , (17.17)

where Ω and ro are the frequency and radius of the orbit (respectively), and
τ is the ejection time. The ballistic equation of motion for parcels ejected at
a time τ then is:

(x, y, z) = (t− τ) [vx(τ), vy(τ), vz] + [xs(τ), ys(τ), zs(τ)] , (17.18)

where t is the present time. We now set t = 0 (“now”) and combine equations
(17.15-17.18) to obtain:

x′ =
z′

cosα

[

sinα cos

(

z′

cosα

)

+
vo
vj

sin

(

Ω

ω

z′

cosα

)]

, (17.19)

y′ =
|z|′
cosα

[

sinα sin

(

z′

cosα

)

+
vo
vj

cos

(

Ω

ω

z′

cosα

)]

, (17.20)

where
(x′, y′, z′) = (x, y, z)/D ; D = vjω , (17.21)

and we have neglected terms of order ro/D (i.e., assuming that the orbital
radius is much smaller than the length scales observed along the jet).

As we expect the precession period to be substantially longer than the orbital
period, we expect to see a “short pass”, mirror symmetric spiral due to the
orbital motion superimposed on a “long pass”, point symmetric spiral due to
the precession. A numerical example of this kind of structure is shown in
Figure 17.1.
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Figure 17.1: Example of the locus of a jet/counterjet system, obtained from
equations (17.19-17.20) setting vo/vj = 0.05, Ω/ω = 10 and α = 10◦. The
“fast”, mirror symmetric “orbital spiral” and the “slow”, point-symmetric pre-
cession spiral are seen. 239
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Chapter 18

Steady jet in a sidewind

18.1 The problem

In a jet source at the centre of an active galaxy, one would expect the jet source
not to have a peculiar motion with respect to the surrounding environment.
In jets ejected by stars or by stellar mass compact objects, however, we would
expect the jet source to have a motion relative to the surrounding, undisturbed
environment. In a frame of reference attached to the outflow source, this
motion is seen as a “sidewind” arriving from an arbitrary direction.

For the case of an isothermal jet, there exists a complete analytic solution
giving the shape of the cross section of the jet and the curved locus of the
jet/counterjet system. This solution is applicable of course to the case of HH
jets, and is described in the following section. It is also possible to construct a
similar model for the non-radiative case, but the resulting differential equation
has to be integrated numerically (see Cantó & Raga[8]), and is not discussed
in this chapter.

18.2 The isothermal model

Let us consider a source that ejects a jet/counterjet system, embedded in
a hypersonic sidewind along the z-axis of density ρa and velocity va. The
jet/counterjet system lies on the yz-plane, and is ejected at an angle β with
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Figure 18.1: Schematic diagram of a jet/counterjet system (in cyan) ejected
from a source (red star) immersed in a sidewind.

respect to the y-axis, as shown in the schematic diagram of Figure 18.1. The
ω axis lies on the xz-plane, and is locally normal to the locus of the jet beam.

As the material in the jet flows along the curved jet path, it feels an effective
acceleration a perpendicular to the z(y) trajectory of the jet. This acceleration
is given by:

a = κv2j , (18.1)

where vj is the jet velocity (assumed to be time- and position-independent),
and

κ =
d2z/dy2

[1 + (dz/dy)2]3/2
, (18.2)

is the curvature of the jet path, i.e., the inverse of the local radius of curvature
of the z(y) curve.

The material within the cross section of the jet feels this acceleration, and
therefore develops a stratified pressure. The cross section is shown schemati-
cally in Figure 18.2.
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Figure 18.2: Stratified pressure in a cross section of the jet. The ω axis is
directed perpendicular to the curved locus of the jet (see figure 18.1).

Assuming that the cross section adjusts to a hydrostatic distribution along the
ω direction (see Figures 18.1 and 18.2), we then have:

dP

dω
= −aρ , (18.3)

which can be integrated to obtain:

P (ω) = P0e
ω/ω0 , (18.4)

where P0 is the gas pressure at the tip (ω = 0) of the cross section, P (ω) is
the stratified pressure, ρ(ω) = P/c20 the density (with c0 being the isothermal
sound speed of the gas) and ω0 = c20/a is the scale height.

Let n̂ be the unit vector normal to the surface of the jet:

n̂ = sin θêx + sinφ cos θêy − cos θ cosφêz , (18.5)

where φ and θ are defined in Figures 18.1-18.2.
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The form of the cross-section of the jet is determined by the balance between
the internal gas pressure and the normal ram pressure exerted by the impinging
sidewind. Therefore:

P (ω) = ρa (va.n̂)
2 = ρav

2
a cos

2 φ , (18.6)

where
cos θ =

[

1 + (dω/dx)2
]−1/2

. (18.7)

Equations (18.4) and (18.6-18.7) can be combined to obtain:

P0 = ρav
2
a cos

2 φ , (18.8)

and
dω

dx
=
√

eω/ω0 − 1 , (18.9)

which can be integrated to give the shape of the cross section:

w = −2ω0 ln [cos(x/2ω0)] . (18.10)

This is the “plasmon” solution (shown in Figure 18.2) first found by De Young
& Axford[12]. The maximum extent of the plasmon in the x-direction is xm =
πω0.

In order to find the z(y) path of the jet by integrating equation (18.8), one has
to relate the pressure P0 to the mass-loss rate of the jet:

Ṁj = 2

∫ xm

0

∫ ∞

ω(x)

ρ(x, ω)vjdωdx = πω2
0

P0

c20
vj , (18.11)

where we have used equations (18.4) and (18.10).

From equations (18.1), (18.4) and (18.11), we have:

P0 =
Ṁjv

3
j

πc20
κ2 , (18.12)

and, using equations (18.2), (18.8) and (18.12) we finally obtain:

λ
d2z

dy2
= 1 +

(

dz

dy

)2

, (18.13)
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where

λ ≡

√

Ṁjv3j
πc30ρav

2
a

(18.14)

is a characteristic length of the model.

Equation (18.13) can be integrated with the boundary conditions z = 0 and
dz/dy = tan β at y = 0 to obtain:

z = λ ln

[

cos β

cos (y/λ+ β)

]

. (18.15)

This solution gives the locus of the jet for y > 0 and for the counterjet for
y < 0. Substituting into the appropriate relations, we also obtain:

κ =
1

λ
cos(y/λ+ β) , (18.16)

a =
v3j
λ

cos(y/λ+ β) , (18.17)

and
P0 = ρav

2
a cos

2(y/λ+ β) . (18.18)

It is clear from equation (18.18) that the maximum pressure in the jet/counterjet
system is formed in the “stagnation point”

ys = −λβ ; zs = λ ln(cos β) , (18.19)

where the wind velocity is perpendicular to the jet path. From equation (18.16)
we then see that λ is the radius of curvature of the jet trajectory at the
stagnation point.

Needless to say, the fact that the jet cross section (equation 18.10) and lo-
cus (18.15) have the same functional form is an unexpected result of the
jet/sidewind jet model.
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Chapter 19

Bullets

19.1 Why bullets?

The general problem of a jet with a general velocity (modulus) + direction
variability has been repeatedly modeled numerically, but its complexity has
defied a general analytic approach. A situation which appears to be relevant
for many astrophysical jets is as follows:

� a velocity variability (i.e., of the modulus of the ejection velocity) pro-
duces internal working surfaces which capture most of the ejected mass,

� because of an ejection direction variability with a longer timescale, these
internal working surfaces travel in different directions, and interact di-
rectly with the surrounding, undisturbed environment.

With such an ejection time-variability, at large enough distances from the out-
flow source the jet becomes a chain of gaseous “bullets” travelling in different
directions, and gradually slowing down due to their interaction with the sur-
rounding environment.

Such a scenario is justified by observations of HH jets, which close to the source
show chains of aligned knots, and at larger distances (of the order of parsecs)
sometimes show disconnected “heads” with lower velocities at larger distances.
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19.2 The plasmon model

We will assume that we have an isothermal bullet of mass M and (isothermal)
sound speed c0, travelling hypersonically at a velocity v within a homogeneous
environment of density ρa. The interaction with the environment will produce
a deceleration a which will result in a stratified pressure within the bullet.
With the same arguments as the ones of the previous chapter (see Figure
18.2), the condition of balance between the post-bow shock pressure and the
thermal pressure within the bullet produces a pressure stratification:

P (z) = P0e
−z/z0 , (19.1)

a density stratification ρ(z) = P (z)/c20 and a bullet of shape

z(r) = −2z0 ln

[

cos

(

r

2z0

)]

, (19.2)

where z is the distance along the symmetry axis from the tip of the plasmon,
and r its cylindrical radius (see equations 18.4 and 18.10, and Figure 18.2).
The pressure scale-height is:

z0 ≡
c20
a
, (19.3)

where c0 is the isothermal sound speed and a the deceleration of the plasmon.
From equation (19.2), one can see that the plasmon shape has a maximum
cylindrical radius

rm = πz0 , (19.4)

obtained for z → ∞.

Now, the mass of the clump can be calculated as:

M =

∫ rm

0

[
∫ ∞

z(r)

ρ(z)dz

]

2πrdr = ξρ0z
3
0 , (19.5)

where

ξ = 2π

(

π2

4
− 1

)

. (19.6)

The second equality of equation (19.5) is obtained using the ρ(z) and z(r)
relations of equations (19.1) and (19.2).
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The model is completed with the ram/gas pressure balance relation:

P0 = ρ0c
2
0 = ρav

2 , (19.7)

for the tip of the plasmon. Combining this relation with equation (19.5) we
then obtain:

a = −dv
dt

= −
(

ξρac
4
0

M

)1/3

v2/3 , (19.8)

which, by setting dv/dt = vdv/dx (with x being the position of the tip of the
plasmon), can be integrated to obtain:

v(x) = v0

(

1− x

x0

)3

, (19.9)

where v0 is the initial velocity of the clump, and

x0 ≡
3v

4/3
0

4

(

M

ξρac40

)1/3

. (19.10)

Integrating equation (19.9) with respect to time, we then obtain:

x(t) = x0

[

1−
(

1− t

t0

)4
]

, (19.11)

where

t0 ≡
4x0
v0

. (19.12)

It is clear that the bullet decelerates, reaching a zero velocity at a position x0
and time t0 (see equations 19.9 and 19.12).

This model has to be considered as qualitative, since a clump-like flow braking
down through an interaction with the surrounding environment has a tendency
to break down into smaller structures. This is seen in numerical simulations
of bullet flows, and also in astrophysical bullet-type flows, which many times
have a lot of substructure. The plasmon model described here has been used
to model working surfaces scattered by a time-dependent ejection direction,
and also for working surfaces ejected by a source moving with respect to the
surrounding environment.

249



250



Bibliography

[1] Abramowitz, M., Stegun, I. A. 1965, Handbook of Mathematical Func-
tions (New York: Dover)

[2] Aldrovandi, S. M. V., Péquignot, D. 1973, A&A, 25, 137

[3] Aldrovandi, S. M. V., Péquignot, D. 1976, A&A, 47, 321

[4] Aller, L. H. 1984, Physics of Thermal Gaseous Nebulae (Dordrecht: Rei-
del)

[5] Bonnor, W. B. 1956, MNRAS, 116, 351

[6] Brocklehurst, M. 1971, MNRAS, 153, 471

[7] Brown, R. L., Mathews, W. 1970, ApJ, 160, 939
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